This thesis presents the design and development of a compact, water-resistant camera system intended for real-time monitoring of machining operations within CNC machine tools. The system integrates a camera module and a microphone, enabling both visual and acoustic data acquisition for comprehensive process observation. Built around a Raspberry Pi board, the system offers a cost-effective, flexible solution suitable for integration in industrial environments. From a software perspective, the entire system is integrated within the Raspberry Pi environment, leveraging the advantages of its open-source architecture to enable a high degree of customizability, streamlined development, and broad community-driven support. The project falls within the scope of machine vision systems and the broader framework of Industry 4.0, which encompasses advanced automation, machine vision, big data, cloud computing, and machine learning technologies that together are transforming the future’s manufacturing landscape. By enabling real-time data collection from the shop floor, this system contributes to a larger intelligent monitoring platform currently under development by researchers at PoliMill Lab. Unlike existing commercial solutions that focus solely on visual monitoring, this system addresses a critical gap by combining visual and acoustic sensing in a single, sealed unit. A detailed benchmarking of commercial products informed the design, with special emphasis on durability, compactness, and upgradeability. The enclosure will provide reliable protection against coolant, chips, and dust in harsh machining environments. The engineering design of the enclosure was developed in alignment with the manufacturing method and material characteristics available at the PoliMill Lab. The two enclosure halves are milled from Al7075, a durable and lightweight aluminum alloy, using high-precision CNC milling. This approach ensures the tight tolerances necessary for water resistance and durability under demanding conditions. The outcome of this thesis is a machine vision–ready camera system tailored for integration within CNC machine tools, capable of supporting both visual and acoustic monitoring to enable enhanced process control. Aligned with the United Nations Sustainable Development Goal 9: Industry, Innovation and Infrastructure; this project contributes to the advancement of intelligent, resilient, and sustainable manufacturing systems. By integrating dual-mode sensing into a compact and cost-effective unit, the system facilitates real-time process monitoring and predictive maintenance strategies, thereby improving operational efficiency, optimizing resource use, and reducing environmental impact. Furthermore, it supports the digital transformation goals of Industry 4.0 by enabling data-driven decision-making, particularly benefiting small and medium-sized enterprises (SMEs) through accessible and affordable technology. These contributions reflect the growing consensus that smart monitoring solutions are essential enablers of sustainable innovation in modern manufacturing.
Questa tesi presenta la progettazione e lo sviluppo di un sistema compatto e resistente all’acqua per il monitoraggio in tempo reale delle operazioni di lavorazione all’interno di macchine utensili CNC. Il sistema integra un modulo videocamera e un microfono, consentendo l'acquisizione simultanea di dati visivi e acustici per un'osservazione completa del processo. Basato su una scheda Raspberry Pi, il sistema rappresenta una soluzione economica e flessibile, idonea all’integrazione in ambienti industriali. Dal punto di vista software, l’intero sistema è integrato nell’ambiente Raspberry Pi, sfruttando i vantaggi dell’architettura open-source, che garantisce un elevato grado di personalizzazione, uno sviluppo semplificato e un ampio supporto dalla comunità. Il progetto si colloca nell’ambito dei sistemi di visione artificiale e, più in generale, nel contesto di Industria 4.0, che comprende automazione avanzata, visione artificiale, big data, cloud computing e tecnologie di apprendimento automatico, elementi che stanno trasformando radicalmente il panorama manifatturiero del futuro. Consentendo la raccolta di dati in tempo reale dal reparto produttivo, questo sistema contribuisce allo sviluppo di una piattaforma intelligente di monitoraggio, attualmente in fase di elaborazione da parte dei ricercatori del PoliMill Lab. A differenza delle soluzioni commerciali esistenti che si concentrano esclusivamente sul monitoraggio visivo, il sistema qui presentato colma una lacuna significativa integrando sensori visivi e acustici in un’unica unità sigillata. Una dettagliata analisi comparativa dei prodotti commerciali ha guidato la fase progettuale, con particolare attenzione alla durabilità, compattezza e possibilità di aggiornamento. L’involucro protettivo è stato progettato per garantire affidabilità contro refrigerante, trucioli e polveri in ambienti di lavorazione particolarmente gravosi. Il design ingegneristico dell’involucro è stato sviluppato in coerenza con i metodi di produzione e le caratteristiche dei materiali disponibili presso il PoliMill Lab. Le due metà dell’involucro sono ricavate tramite fresatura CNC ad alta precisione da Al7075, una lega di alluminio leggera e resistente, per garantire le tolleranze necessarie alla resistenza all’acqua e alla durabilità in condizioni operative severe. Il risultato di questa tesi è un sistema videocamera pronto per l’integrazione in macchine utensili CNC, in grado di supportare il monitoraggio visivo e acustico per un controllo avanzato dei processi. Allineato con l’Obiettivo di Sviluppo Sostenibile 9 delle Nazioni Unite: “Industria, Innovazione e Infrastrutture”, questo progetto contribuisce all’evoluzione di sistemi manifatturieri intelligenti, resilienti e sostenibili. L’integrazione della doppia modalità di rilevamento in un’unità compatta ed economicamente accessibile facilita il monitoraggio in tempo reale dei processi e l’adozione di strategie di manutenzione predittiva, migliorando l’efficienza operativa, ottimizzando l’uso delle risorse e riducendo l’impatto ambientale. Inoltre, il sistema sostiene gli obiettivi di trasformazione digitale dell’Industria 4.0, abilitando decisioni guidate dai dati e offrendo una tecnologia accessibile soprattutto alle piccole e medie imprese (PMI). Tali contributi rispecchiano il consenso crescente sul fatto che soluzioni di monitoraggio intelligenti siano elementi fondamentali per un’innovazione sostenibile nella manifattura contemporanea.
Design and development of a water-resistant machine vision camera system featuring a machined aluminum enclosure and dual sensing capability for machining applications
Uludere, Ekin Numan
2024/2025
Abstract
This thesis presents the design and development of a compact, water-resistant camera system intended for real-time monitoring of machining operations within CNC machine tools. The system integrates a camera module and a microphone, enabling both visual and acoustic data acquisition for comprehensive process observation. Built around a Raspberry Pi board, the system offers a cost-effective, flexible solution suitable for integration in industrial environments. From a software perspective, the entire system is integrated within the Raspberry Pi environment, leveraging the advantages of its open-source architecture to enable a high degree of customizability, streamlined development, and broad community-driven support. The project falls within the scope of machine vision systems and the broader framework of Industry 4.0, which encompasses advanced automation, machine vision, big data, cloud computing, and machine learning technologies that together are transforming the future’s manufacturing landscape. By enabling real-time data collection from the shop floor, this system contributes to a larger intelligent monitoring platform currently under development by researchers at PoliMill Lab. Unlike existing commercial solutions that focus solely on visual monitoring, this system addresses a critical gap by combining visual and acoustic sensing in a single, sealed unit. A detailed benchmarking of commercial products informed the design, with special emphasis on durability, compactness, and upgradeability. The enclosure will provide reliable protection against coolant, chips, and dust in harsh machining environments. The engineering design of the enclosure was developed in alignment with the manufacturing method and material characteristics available at the PoliMill Lab. The two enclosure halves are milled from Al7075, a durable and lightweight aluminum alloy, using high-precision CNC milling. This approach ensures the tight tolerances necessary for water resistance and durability under demanding conditions. The outcome of this thesis is a machine vision–ready camera system tailored for integration within CNC machine tools, capable of supporting both visual and acoustic monitoring to enable enhanced process control. Aligned with the United Nations Sustainable Development Goal 9: Industry, Innovation and Infrastructure; this project contributes to the advancement of intelligent, resilient, and sustainable manufacturing systems. By integrating dual-mode sensing into a compact and cost-effective unit, the system facilitates real-time process monitoring and predictive maintenance strategies, thereby improving operational efficiency, optimizing resource use, and reducing environmental impact. Furthermore, it supports the digital transformation goals of Industry 4.0 by enabling data-driven decision-making, particularly benefiting small and medium-sized enterprises (SMEs) through accessible and affordable technology. These contributions reflect the growing consensus that smart monitoring solutions are essential enablers of sustainable innovation in modern manufacturing.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Uludere_Thesis.pdf
non accessibile
Descrizione: Text of the Thesis
Dimensione
17.15 MB
Formato
Adobe PDF
|
17.15 MB | Adobe PDF | Visualizza/Apri |
2025_07_Uludere_Technical Drawings.pdf
non accessibile
Descrizione: Supporting Thesis Document - Technical Drawings
Dimensione
2.19 MB
Formato
Adobe PDF
|
2.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240680