Copper-steel multimaterials represent an advanced class of engineered structures that combine the excellent electrical and thermal conductivity of copper with the high mechanical strength of steel. This study investigates the microstructural, mechanical, and thermophysical properties of the individual layers within a copper–4130 steel multimaterial produced via laser directed energy deposition (LDED) using an in-situ alloying approach. Four intermediate compositions were analyzed: pure 4130 steel (Fe100), 75% 4130 – 25% Cu (Fe75Cu25), 50% 4130 – 50% Cu (Fe50Cu50), and 25% 4130 – 75% Cu (Fe25Cu75). The Fe25Cu75 layer experienced solidification cracking, attributed to significant thermal stresses and insufficient liquid feeding during solidification. In contrast, Fe50Cu50 displayed effective backfilling of microcracks due to the presence of abundant Cu-rich terminal liquid during early solidification. The combined effects of Fe–Cu liquid phase separation and Marangoni convection led to the formation of a recursive macrostructure in Fe50Cu50, characterized by alternating copper- and steel-rich domains acting as matrix and dispersed phases. The presence of interconnected Cu-rich networks in Fe50Cu50 and Fe25Cu75 significantly improved thermal diffusivity by approximately 50% and 200%, respectively, compared to the Fe100 baseline. The complete multimaterial sample also showed local deviations from the nominal chemical composition, caused by interlayer mixing during deposition. This phenomenon extended the region vulnerable to solidification cracking up to the first Fe50Cu50 layer. Overall, these results provide valuable insight into the key factors influencing LDED of copper–steel FGMs and contribute to the optimization of processing strategies and the development of predictive models to improve their manufacturability
I multimateriali rame–acciaio rappresentano una classe avanzata di strutture ingegnerizzate che combinano l’eccellente conducibilità elettrica e termica del rame con l’elevata resistenza meccanica dell’acciaio. Questo studio analizza le proprietà microstrutturali, meccaniche e termofisiche degli strati costitutivi di un multimateriale rame–acciaio 4130 realizzato tramite Laser Directed Energy Deposition (LDED), utilizzando una strategia di lega in-situ. Sono state analizzate quattro composizioni intermedie: acciaio 4130 puro (Fe100), 75% 4130 – 25% Cu (Fe75Cu25), 50% 4130 – 50% Cu (Fe50Cu50) e 25% 4130 – 75% Cu (Fe25Cu75). Lo strato Fe25Cu75 ha mostrato la presenza di cricche da solidificazione, attribuibile a elevate tensioni termiche e a un insufficiente apporto di liquido durante la solidificazione. Al contrario, Fe50Cu50 ha evidenziato un efficace riempimento delle microcricche grazie all’abbondante presenza di fase liquida terminale ricca in rame durante le prime fasi della solidificazione. La combinazione tra separazione di fase liquida Fe–Cu e i moti di convezione di Marangoni ha portato alla formazione di una macrostruttura ricorsiva nello strato Fe50Cu50, caratterizzata da domini alternati ricchi in rame e in acciaio, con ruoli inversi di matrice e fase dispersa. La presenza di reti interconnesse ricche in rame negli strati Fe50Cu50 e Fe25Cu75 ha determinato un significativo incremento della diffusività termica, pari a circa il 50% e il 200% rispettivamente, rispetto al riferimento Fe100. Il campione multimateriale completo ha inoltre mostrato deviazioni locali dalla composizione chimica nominale, causate dall’intermescolamento tra strati durante la deposizione. Questo fenomeno ha esteso la zona suscettibile a cricche da solidificazione fino al primo strato Fe50Cu50. Complessivamente, questi risultati forniscono informazioni rilevanti sui fattori critici che influenzano il processo LDED dei multimateriali rame–acciaio, contribuendo all’ottimizzazione delle strategie di fabbricazione e allo sviluppo di modelli predittivi per migliorarne la realizzabilità.
Characterization of a Fe-Cu multimaterial printed by laser direct energy deposition additive manufacturing technique
CECOTTI, TOMMASO ANTONIO
2024/2025
Abstract
Copper-steel multimaterials represent an advanced class of engineered structures that combine the excellent electrical and thermal conductivity of copper with the high mechanical strength of steel. This study investigates the microstructural, mechanical, and thermophysical properties of the individual layers within a copper–4130 steel multimaterial produced via laser directed energy deposition (LDED) using an in-situ alloying approach. Four intermediate compositions were analyzed: pure 4130 steel (Fe100), 75% 4130 – 25% Cu (Fe75Cu25), 50% 4130 – 50% Cu (Fe50Cu50), and 25% 4130 – 75% Cu (Fe25Cu75). The Fe25Cu75 layer experienced solidification cracking, attributed to significant thermal stresses and insufficient liquid feeding during solidification. In contrast, Fe50Cu50 displayed effective backfilling of microcracks due to the presence of abundant Cu-rich terminal liquid during early solidification. The combined effects of Fe–Cu liquid phase separation and Marangoni convection led to the formation of a recursive macrostructure in Fe50Cu50, characterized by alternating copper- and steel-rich domains acting as matrix and dispersed phases. The presence of interconnected Cu-rich networks in Fe50Cu50 and Fe25Cu75 significantly improved thermal diffusivity by approximately 50% and 200%, respectively, compared to the Fe100 baseline. The complete multimaterial sample also showed local deviations from the nominal chemical composition, caused by interlayer mixing during deposition. This phenomenon extended the region vulnerable to solidification cracking up to the first Fe50Cu50 layer. Overall, these results provide valuable insight into the key factors influencing LDED of copper–steel FGMs and contribute to the optimization of processing strategies and the development of predictive models to improve their manufacturability| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Cecotti_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
11.22 MB
Formato
Adobe PDF
|
11.22 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Cecotti_Executive summary_02.pdf
accessibile in internet per tutti
Descrizione: Testo Executive summary
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240705