This thesis presents the development of a numerical framework for simulating volumetric growth in ocular tissues, focusing on both physiological eye development and the pathological progression of keratoconus. A finite element approach was adopted to model the mechanical response and growth-driven remodeling of the eye, incorporating patient-specific geometries and material properties. The simulations rely on the multiplicative decomposition of the deformation gradient F into an elastic part Fe and a growth part Fg, a method well suited for modeling soft biological tissues. For the keratoconus case, an anisotropic growth tensor Fg was combined with a degradation algorithm that progressively reduced the mechanical properties of the stroma. This dual mechanism enabled the simulation of cone-shaped bulging and thinning, reproducing key features of the disease. The model was calibrated using clinical data from an 11-year patient follow-up, including curvature maps and pachymetry profiles. Validation was carried out by comparing tangential curvature maps, Belin indices, and minimum thickness trends between simulations and clinical observations, showing strong agreement in both severity and spatial distribution. In parallel, a second growth model was developed to simulate physiological eye development from age 3 to 20. The cornea was assumed to maintain constant dimensions, while the sclera underwent volumetric expansion governed by a sigmoidal growth law. Different material behaviors were assigned to the cornea and sclera, reflecting their distinct anatomical and biomechanical properties. The model was calibrated to reproduce axial length trends reported in the literature, achieving good consistency with reference data. The proposed framework demonstrates the ability to simulate complex, time-dependent remodeling phenomena in ocular tissues and highlights the flexibility of growth algorithms to adapt to both pathological and physiological scenarios.
Questa tesi presenta lo sviluppo di un framework numerico per la simulazione della crescita volumetrica dei tessuti oculari, con l'obiettivo di modellare sia lo sviluppo fisiologico dell’occhio sia la progressione patologica del cheratocono. È stato adottato un approccio agli elementi finiti per simulare la risposta meccanica e il rimodellamento guidato dalla crescita, includendo geometrie e proprietà materiali paziente-specifiche. È stata utilizzata la decomposizione moltiplicativa del gradiente di deformazione F nei suoi componenti elastico Fe e di crescita Fg, adatta alla modellazione dei tessuti biologici molli. Nel caso del cheratocono, è stato implementato un modello di crescita corneale basato su un tensore di crescita anisotropo Fg combinato con un algoritmo di degradazione progressiva delle proprietà meccaniche dello stroma. Questo meccanismo ha permesso di simulare il progressivo bulging e assottigliamento della cornea. Il modello è stato calibrato su dati clinici longitudinali raccolti in un arco temporale di 11 anni, comprendenti mappe di curvatura e profili pachimetrici. La validazione è avvenuta confrontando mappe di curvatura tangenziale, indici di Belin e l’evoluzione dello spessore minimo, mostrando una buona coerenza in termini di gravità e morfologia spaziale. Parallelamente, è stato modellato lo sviluppo fisiologico dell’occhio dai 3 ai 20 anni, assumendo una cornea di dimensioni costanti e una sclera in espansione secondo una legge di crescita sigmoidea. Sono stati adottati comportamenti materiali distinti per cornea e sclera, coerentemente con le loro differenze anatomiche. Il modello è stato calibrato per replicare l’andamento della lunghezza assiale riportato in letteratura. Il lavoro proposto si dimostra efficace nel simulare fenomeni complessi di rimodellamento oculare nel tempo, con potenziale applicazione nella modellazione personalizzata di patologie oculari.
Numerical modeling of ocular growth: insights into keratoconus and scleral development
Turra, Alessandra
2024/2025
Abstract
This thesis presents the development of a numerical framework for simulating volumetric growth in ocular tissues, focusing on both physiological eye development and the pathological progression of keratoconus. A finite element approach was adopted to model the mechanical response and growth-driven remodeling of the eye, incorporating patient-specific geometries and material properties. The simulations rely on the multiplicative decomposition of the deformation gradient F into an elastic part Fe and a growth part Fg, a method well suited for modeling soft biological tissues. For the keratoconus case, an anisotropic growth tensor Fg was combined with a degradation algorithm that progressively reduced the mechanical properties of the stroma. This dual mechanism enabled the simulation of cone-shaped bulging and thinning, reproducing key features of the disease. The model was calibrated using clinical data from an 11-year patient follow-up, including curvature maps and pachymetry profiles. Validation was carried out by comparing tangential curvature maps, Belin indices, and minimum thickness trends between simulations and clinical observations, showing strong agreement in both severity and spatial distribution. In parallel, a second growth model was developed to simulate physiological eye development from age 3 to 20. The cornea was assumed to maintain constant dimensions, while the sclera underwent volumetric expansion governed by a sigmoidal growth law. Different material behaviors were assigned to the cornea and sclera, reflecting their distinct anatomical and biomechanical properties. The model was calibrated to reproduce axial length trends reported in the literature, achieving good consistency with reference data. The proposed framework demonstrates the ability to simulate complex, time-dependent remodeling phenomena in ocular tissues and highlights the flexibility of growth algorithms to adapt to both pathological and physiological scenarios.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Turra_Tesi.pdf
solo utenti autorizzati a partire dal 02/07/2026
Descrizione: testo tesi
Dimensione
7.28 MB
Formato
Adobe PDF
|
7.28 MB | Adobe PDF | Visualizza/Apri |
2025_07_Turra_Executive_Summary.pdf
solo utenti autorizzati a partire dal 02/07/2026
Descrizione: executive summary
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240737