Organ-on-a-chip (OoC) devices are innovative microphysiological systems that replicate the structure and function of human organs using microfabrication and tissue engineering. These platforms integrate living cells within precisely controlled microfluidic environments to mimic key physiological responses, enabling advanced drug testing, disease modeling, and personalized medicine with greater accuracy than traditional in vitro or animal models. There are multiple ways of fabricating these chips, from replica molding using traditional soft lithography with PDMS, to other techniques such as precise 3D printing with two-photon polymerization and more industrially scalable methods like micro injection molding and hot embossing. This thesis is done in collaboration with BiomimX Srl to explore cost-effective and faster alternative approaches to fabricate OoC devices. As brought in this work and given the status quo, BiomimX’s production line can leverage its production and services by gradually shifting towards hot embossing from traditional elastomer casting. Here, hot embossing has been implemented in production of one of BiomimX products, uBeat® Platform. To prototype the first hot embossed chips, a feasible desktop hot embosser, Sublym100™, along with thermoplastic sheets of Flexdym™ were purchased from Eden Tech. With the aim of obtaining a functional PDMS-free prototype of uBeat® Platform, this study successfully established the hot embossing of Flexdym™ as a viable method for fabricating the uBeat® Platform, maintaining key functionalities including design fidelity, injectability, and pneumatic stimulation. PDMS molds were identified as the optimal choice for the hot embossing process, with precise parameters defined to achieve target layer thickness and structural integrity. Bonding protocols were developed for cell culture layers and mechanical stimulation layers. For cell culture layers, the protocols demonstrated effective fluid confinement when hot-embossed Flexdym™ layers were bonded to untreated Flexdym™. Additionally, conformal contact bonding enabled reliable pneumatic stimulation, ensuring functional performance.
I dispositivi Organ-on-a-Chip (OoC) sono sistemi micro-fisiologici innovativi che replicano la struttura e la funzione di organi umani attraverso tecniche di micro-fabbricazione e ingegneria tissutale. Queste piattaforme integrano cellule viventi in ambienti microfluidici controllati con precisione, mimando le risposte fisiologiche chiave e consentendo test farmacologici avanzati, modellizzazione di malattie e medicina personalizzata con una precisione superiore rispetto ai modelli tradizionali in vitro o animali. Esistono diverse tecniche per fabbricare questi chip, dallo stampaggio a replica tramite litografia soffice tradizionale con PDMS, a metodi come la stampa 3D precisa a polimerizzazione a due fotoni, fino a tecniche più scalabili industrialmente come lo stampaggio a iniezione microiniettata e l’hot embossing.* Questa tesi è stata sviluppata in collaborazione con BiomimX Srl per esplorare approcci alternativi, economicamente vantaggiosi e rapidi, per la fabbricazione di dispositivi OoC. Come dimostrato in questo lavoro e considerando lo status quo, la linea di produzione di BiomimX può ottimizzare la propria produzione e servizi passando gradualmente dallo stampaggio tradizionale in elastomero all’hot embossing. In questo contesto, l’hot embossing è stato implementato per la produzione di uno dei prodotti BiomimX, la piattaforma uBeat®. Per prototipare i primi chip realizzati con hot embossing, è stato utilizzato un sistema desktop compatto, il Sublym100™ di Eden Tech, insieme a fogli termoplastici Flexdym™. Con l’obiettivo di ottenere un prototipo funzionale della piattaforma uBeat® privo di PDMS, questo studio ha dimostrato con successo che l’hot embossing del Flexdym™ è un metodo valido per fabbricare la piattaforma uBeat®, mantenendo funzionalità essenziali come fedeltà del design, iniettabilità e stimolazione pneumatica. Gli stampi in PDMS si sono rivelati la scelta ottimale per il processo di hot embossing, con parametri definiti con precisione per ottenere lo spessore desiderato e l’integrità strutturale. Sono stati sviluppati protocolli di incollaggio per gli strati di coltura cellulare e quelli di stimolazione meccanica. Per gli strati di coltura cellulare, i protocolli hanno garantito un efficace confinamento dei fluidi quando gli strati di Flexdym™ embossati sono stati incollati a Flexdym™ non trattato. Inoltre, l’incollaggio a contatto conforme ha permesso una stimolazione pneumatica affidabile, assicurando prestazioni funzionali.
Towards industrialization of uBeat platforms: from PDMS to thermoplastics
GUDARZNASERI, MOHAMMAD
2024/2025
Abstract
Organ-on-a-chip (OoC) devices are innovative microphysiological systems that replicate the structure and function of human organs using microfabrication and tissue engineering. These platforms integrate living cells within precisely controlled microfluidic environments to mimic key physiological responses, enabling advanced drug testing, disease modeling, and personalized medicine with greater accuracy than traditional in vitro or animal models. There are multiple ways of fabricating these chips, from replica molding using traditional soft lithography with PDMS, to other techniques such as precise 3D printing with two-photon polymerization and more industrially scalable methods like micro injection molding and hot embossing. This thesis is done in collaboration with BiomimX Srl to explore cost-effective and faster alternative approaches to fabricate OoC devices. As brought in this work and given the status quo, BiomimX’s production line can leverage its production and services by gradually shifting towards hot embossing from traditional elastomer casting. Here, hot embossing has been implemented in production of one of BiomimX products, uBeat® Platform. To prototype the first hot embossed chips, a feasible desktop hot embosser, Sublym100™, along with thermoplastic sheets of Flexdym™ were purchased from Eden Tech. With the aim of obtaining a functional PDMS-free prototype of uBeat® Platform, this study successfully established the hot embossing of Flexdym™ as a viable method for fabricating the uBeat® Platform, maintaining key functionalities including design fidelity, injectability, and pneumatic stimulation. PDMS molds were identified as the optimal choice for the hot embossing process, with precise parameters defined to achieve target layer thickness and structural integrity. Bonding protocols were developed for cell culture layers and mechanical stimulation layers. For cell culture layers, the protocols demonstrated effective fluid confinement when hot-embossed Flexdym™ layers were bonded to untreated Flexdym™. Additionally, conformal contact bonding enabled reliable pneumatic stimulation, ensuring functional performance.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Gudarznaseri_Thesis_01.pdf
non accessibile
Dimensione
2.6 MB
Formato
Adobe PDF
|
2.6 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Gudarznaseri_Executive Summary_02.pdf
non accessibile
Dimensione
989.65 kB
Formato
Adobe PDF
|
989.65 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240738