Aerial platforms are emerging as promising solutions for planetary exploration, especially in a harsh and extreme environment such as that of Venus. The Venus Aerial Robotic Balloon (Aerobot), operating in the planet's upper atmosphere, represents an attractive alternative to traditional landers for long-duration scientific missions in terms of cost, mass, and energy consumption. An exciting aspect is the potential use of such platforms to detect seismic activity by capturing infrasonic waves propagating from the surface, to investigate the planet's internal composition. The central question is whether it is feasible to detect seismic-induced infrasonic waves using the balloon structure itself, and, if so, which types of sensors should be employed and where they should be optimally placed on the balloon. This thesis contributes to the development of such missions by proposing a comprehensive simulation framework for modeling the Aerobot’s dynamic behavior and its acoustic–structure interaction (ASI) with seismic infrasound. To this end, an hybrid Abaqus-MATLAB modular and user-friendly simulator is implemented, with detailed finite element modeling (FEM) of the Aerobot across multiple configurations. The system's dynamic response is validated against experimental data, demonstrating strong agreement and confirming the model’s accuracy. In parallel, the thesis introduces an acoustic–structure interaction (ASI) framework to study the coupling between infrasonic waves and the Aerobot’s structural dynamics through a coupled numerical approach that integrates the FEM-based structural model with Boundary Element Method (BEM) simulations of the acoustic field. The reliability of this FEM–BEM coupling is supported by experimental validation. Finally, the developed tools analyze optimal sensor placement on the balloon surface to maximize sensitivity to seismic-induced pressure fields. These results offer important insights for future Venus missions and contribute to the broader field of planetary seismology using aerial platforms.
Le piattaforme aeree stanno emergendo come soluzioni promettenti per l’esplorazione planetaria, in particolare in ambienti ostili ed estremi come quello di Venere. Il pallone aerostatico robotico venusiano (Aerobot), che opera negli strati superiori dell’atmosfera del pianeta, rappresenta un’interessante alternativa ai lander tradizionali per missioni scientifiche di lunga durata, grazie ai vantaggi in termini di costi, massa e consumo energetico. Un aspetto di particolare interesse è la possibilità di utilizzare tali piattaforme per il rilevamento di attività sismica catturando le onde infrasoniche provenienti dalla superficie, al fine di di investigare la composizione interna del pianeta. La questione centrale riguarda la fattibilità di rilevare queste onde sfruttando la dinamica del pallone stesso e, in tal caso, definire la tipologia e il posizionamento ottimale dei sensori da utilizzare. Questa tesi contribuisce allo sviluppo di tali future missioni proponendo un framework di simulazione completo per modellare il comportamento dinamico dell’aerobot e la sua interazione acustico-strutturale con le onde acustiche di origine sismica. A tal fine, è stato realizzato in ambiente MATLAB un simulatore modulare e di facile utilizzo, che consente la modellazione dettagliata dell'aerobot tramite metodo agli elementi finiti che supporta diverse configurazioni strutturali. La risposta dinamica del sistema è stata validata attraverso dati sperimentali, mostrando un’elevata coerenza e confermando l’accuratezza del modello. Parallelamente, la tesi introduce anche un framework numerico per la modellazione dell’interazione acustico-strutturale, basato sull’accoppiamento tra il modello FEM strutturale e una simulazione del campo acustico ottenuta tramite il metodo degli elementi al contorno (BEM). La validità di tale accoppiamento FEM–BEM è confermata da una validazione sperimentale. Infine, gli strumenti sviluppati sono impiegati per analizzare il posizionamento ottimale dei sensori sulla superficie del pallone al fine di massimizzare la sensibilità ai campi di pressione generate dai segnali sismici. I risultati ottenuti offrono indicazioni significative per future missioni su Venere e contribuiscono al più ampio campo della sismologia planetaria mediante piattaforme aeree.
Dynamic modeling and seismo-acoustic structure interaction analysis for aerobot exploration on Venus
FOLINO, LORENZO;Olivieri, Beatrice
2024/2025
Abstract
Aerial platforms are emerging as promising solutions for planetary exploration, especially in a harsh and extreme environment such as that of Venus. The Venus Aerial Robotic Balloon (Aerobot), operating in the planet's upper atmosphere, represents an attractive alternative to traditional landers for long-duration scientific missions in terms of cost, mass, and energy consumption. An exciting aspect is the potential use of such platforms to detect seismic activity by capturing infrasonic waves propagating from the surface, to investigate the planet's internal composition. The central question is whether it is feasible to detect seismic-induced infrasonic waves using the balloon structure itself, and, if so, which types of sensors should be employed and where they should be optimally placed on the balloon. This thesis contributes to the development of such missions by proposing a comprehensive simulation framework for modeling the Aerobot’s dynamic behavior and its acoustic–structure interaction (ASI) with seismic infrasound. To this end, an hybrid Abaqus-MATLAB modular and user-friendly simulator is implemented, with detailed finite element modeling (FEM) of the Aerobot across multiple configurations. The system's dynamic response is validated against experimental data, demonstrating strong agreement and confirming the model’s accuracy. In parallel, the thesis introduces an acoustic–structure interaction (ASI) framework to study the coupling between infrasonic waves and the Aerobot’s structural dynamics through a coupled numerical approach that integrates the FEM-based structural model with Boundary Element Method (BEM) simulations of the acoustic field. The reliability of this FEM–BEM coupling is supported by experimental validation. Finally, the developed tools analyze optimal sensor placement on the balloon surface to maximize sensitivity to seismic-induced pressure fields. These results offer important insights for future Venus missions and contribute to the broader field of planetary seismology using aerial platforms.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Folino_Olivieri_Executive Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF | Visualizza/Apri |
2025_07_Folino_Olivieri_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
32.5 MB
Formato
Adobe PDF
|
32.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240788