The development of smart prosthetic liners equipped with embedded sensors offers new op portunities for real-time monitoring and personalized optimization of the user-prosthesis interface. This thesis presents the design, fabrication, and characterization of a textile based capacitive pressure sensor specifically engineered for integration into lower-limb prosthetic liners. Capacitive sensing was selected because of its simplicity, low-power consumption, and good compatibility with flexible materials. The sensor design follows a parallel-plate capacitor architecture using silver-plated textile electrodes and a silicone dielectric layer. Three silicone types, differentiated by Shore hardness (soft, intermediate, and hard), were analyzed through simulation and experimental testing to evaluate their mechanical and electrical responses under different levels of pressure. The fabrication process employed a custom 3D-printed mold, specifically designed to ensure reproducible sensor geometry and strong bonding between the conductive and dielectric layers. Sensors were evaluated using capacitance testing with calibrated weights and compression testing via electromechanical bench with LCR meter. The obtained findings showed that while the softest silicone offered the highest sensitivity, it exhibited the lowest repeatability due to mechanical hysteresis. The intermediate silicone showed consistent performance but slightly lower sensitivity. The hardest silicone delivered the best balance between sensi tivity, mechanical stability, and repeatability, making it the most suitable for prosthetic applications. This study validates the feasibility of integrating textile-based capacitive pressure sensors into smart liners and highlights the critical role of material selection in sensor performance. Future work may explore long-term durability testing in real pros thetic environments.
Lo sviluppo di liner protesici intelligenti, dotati di sensori integrati, offre nuove opportu nità per il monitoraggio in tempo reale e l’ottimizzazione personalizzata dell’interfaccia utente-protesi. Questa tesi presenta la progettazione, la fabbricazione e la caratteriz zazione di un sensore di pressione capacitivo di tipo tessile, pensato specificamente per essere integrato nei liner delle protesi di arto inferiore. È stato scelto un meccanismo capacitivo per la sua semplicità, il basso consumo energetico e la compatibilità con ma teriali flessibili. Il sensore è basato su una struttura a condensatore a piastre parallele, con elettrodi in tessuto argentato e uno strato dielettrico in silicone. Sono stati analizzati tre tipi di silicone, differenziati per durezza Shore (morbido, intermedio e rigido), medi ante simulazioni e test sperimentali, al fine di valutarne il comportamento meccanico ed elettrico sotto diversi livelli di pressione. Il processo di fabbricazione ha utilizzato uno stampo personalizzato stampato in 3D per garantire una geometria ripetibile e una forte adesione tra strati conduttivi e dielettrici. I sensori sono stati testati tramite prove di capacità con pesi calibrati e test di compressione con banco elettromeccanico dotato di misuratore LCR. I risultati ottenuti hanno mostrato che, sebbene il silicone più morbido offrisse la sensibilità maggiore, presentava anche la minore ripetibilità a causa dell’isteresi meccanica. Il silicone intermedio ha mostrato prestazioni costanti, ma una sensibilità leggermente inferiore. Il silicone più rigido offriva il miglior compromesso tra sensibilità, stabilità meccanica e ripetibilità, rendendolo il più adatto per applicazioni protesiche. Questo studio conferma la fattibilità dell’integrazione di sensori capacitivi di tipo tes sile nei liner intelligenti, evidenziando l’importanza della selezione dei materiali per le prestazioni del sensore. Sviluppi futuri potrebbero includere test di durabilità a lungo termine in ambienti protesici reali.
Design and development of a textile-based capacitive pressure sensor for prosthetic applications
MAZZOLARI, LORENZO
2024/2025
Abstract
The development of smart prosthetic liners equipped with embedded sensors offers new op portunities for real-time monitoring and personalized optimization of the user-prosthesis interface. This thesis presents the design, fabrication, and characterization of a textile based capacitive pressure sensor specifically engineered for integration into lower-limb prosthetic liners. Capacitive sensing was selected because of its simplicity, low-power consumption, and good compatibility with flexible materials. The sensor design follows a parallel-plate capacitor architecture using silver-plated textile electrodes and a silicone dielectric layer. Three silicone types, differentiated by Shore hardness (soft, intermediate, and hard), were analyzed through simulation and experimental testing to evaluate their mechanical and electrical responses under different levels of pressure. The fabrication process employed a custom 3D-printed mold, specifically designed to ensure reproducible sensor geometry and strong bonding between the conductive and dielectric layers. Sensors were evaluated using capacitance testing with calibrated weights and compression testing via electromechanical bench with LCR meter. The obtained findings showed that while the softest silicone offered the highest sensitivity, it exhibited the lowest repeatability due to mechanical hysteresis. The intermediate silicone showed consistent performance but slightly lower sensitivity. The hardest silicone delivered the best balance between sensi tivity, mechanical stability, and repeatability, making it the most suitable for prosthetic applications. This study validates the feasibility of integrating textile-based capacitive pressure sensors into smart liners and highlights the critical role of material selection in sensor performance. Future work may explore long-term durability testing in real pros thetic environments.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Mazzolari_Tesi.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
58.01 MB
Formato
Adobe PDF
|
58.01 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Mazzolari_ExecutiveSummary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.8 MB
Formato
Adobe PDF
|
1.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240809