The Molten Salt Fast Reactor (MSFR) is one of the Generation IV technologies selected by the Generation IV International Forum. It is a liquid fuel reactor that uses a salt mixture containing fluorides of fertile and fissile materials. This feature allows for on line fuel treatment and fission product removal. Which is usually not common in commercial reactors. Most of the scientific tools for nuclear reactor neutronic simulation are designed for solid fuel reactors, which do not have an online fuel treatment. For this reason, simulation tools like SERPENT are modified to properly account for these MSFR features within the EVOL, MARS and SAMOSAFER projects. The aim of this thesis is to test an additional open-source simulation tool, i.e., the Monte Carlo neutron and photon transport code OpenMC. Its capability in simulating and properly describing the reactor behavior is tested using well-known benchmarks. The static benchmark involves the study of the criticality, some neutronic parameters, the neutron spectrum, and the evaluation of the feedback coefficients with direct method, for both uranium-started and transuranic-started initial fuel compositions. The results obtained are compared and verified against those of the partners in the EVOL and MARS projects. In most cases, good agreement is found, but discrepancies are observed for keff calculations of the transuranic-started fuel when adopting different libraries. Furthermore, the βeff evaluations are inconsistent and they will require studies using more accurate methods. The functionalities provided by OpenMC for simulating the online fuel treatment need to be tested. For this reason, a depletion benchmark is performed following the Deliverable D3.6 indications of the SAMOSAFER project. This thesis includes the study of Step 0 and Step 1. For both steps, the nuclide inventory after five years of simulation is evaluated against those obtained by the other SAMOSAFER project partners. Step 0 simulation involves the radioactive decay of a five-year irradiated fuel composition; this is performed with and without including the modeling of the nuclide removal systems. OpenMC provides accurate results thanks to its ‘add_transfer_rate’ method, which allows it to correctly implement the nuclide removal. Step 1 adds to Step 0 the irradiation phenomenon and simulates a ²³³U-started initial fuel load. It is conducted using the official depletion chains of OpenMC but also extending them to include more reaction channels. This extension leads to good light and heavy elements predictions when using the ENDFB 8.0 derived chain. Reactions like (n,t) and (n,d) open important channels for H and He production. OpenMC shows comparable results but with a slight underestimation of medium-Z elements that must be further investigated.
Il Reattore Veloce a Sali Fusi (MSFR) è una delle tecnologie selezionate per far parte della Generazione IV dal Generation IV International Forum. È un reattore a combustibile liquido che usa una miscela di fluoruri di materiale fissile e fertile. Questa caratteristica permette un trattamento online del combustibile e della rimozione dei prodotti di fissione, cosa di solito non comune nei reattori commerciali. La maggior parte degli strumenti scientifici di simulazione neutronica sono progettati per reattori a combustibile solido che non prevedono un trattamento online del combustibile. Per ovviare a ciò, strumenti come SERPENT sono stati modificati nell’ambito di progetti come EVOL, MARS and SAMOSAFER. L’obiettivo di questa tesi è stato quello di testare un ulteriore strumento open source di simulazione. Il codice Monte Carlo di trasporto neutronico OpenMC è stato utilizzato in questo lavoro di tesi; la sua capacità di simulare correttamente il comportamento del reattore è stata testata usando noti benchmark. La comparazione statica ha coinvolto lo studio di criticità, di parametri neutronici, dello spettro neutronico e la valutazione dei coefficienti di retroazione utilizzando il metodo diretto. Questo è stato fatto per due composizioni iniziali del combustibile: una inizializzata con uranio e una con transuranici. I risultati sono stati comparati con quelli degli altri partners dei progetti EVOL and MARS. È stato trovato accordo nella maggior parte dei casi, ma sono state osservate discrepanze nei calcoli del keff, ottenuti con diverse librerie, per il combustibile transuranico. Le funzionalità fornite da OpenMC per simulare il trattamento online del combustibile andavano testate. Per questa ragione, un benchmark di bruciamento è stato effettuato secondo la Deliverable D3.6 del progetto SAMOSAFER. Questa tesi include lo studio dello Step 0 e 1. Per entrambi, il contenuto di nuclidi dopo cinque anni di simulazione è stato confrontato con quello degli altri partner del progetto SAMOSAFER. Lo Step 0 studia il decadimento di un combustibile irradiato per cinque anni; questo è stato eseguito sia includendo che non includendo la rimozione dei nuclidi. OpenMC ha fornito risultati accurati grazie al suo metodo ‘add_transfer_rate’’ che implementa la corretta rimozione dei nuclidi. Lo Step 1 aggiunge l’irraggiamento e simula un combustibile iniziale a ²³³U. Esso è stato condotto con le catene di deplezione ufficiali di OpenMC, ma anche estendendole includendo più canali di reazione. Usando catene basate sui dati di ENDFB-8.0, queste estensioni forniscono ottime stime sui nuclidi leggeri e pesanti. Reazioni come la (n,t) e la (n,d) aprono utili canali per la produzione di H ed He. OpenMC ha mostrato risultati compatibili ma che sottostimano leggermente gli elementi a Z intermedio, questo richiede ulteriori investigazioni.
Assessment of OpenMC for static and depletion studies of the MSFR with EVOL and SAMOSAFER benchmarks
BELOTTI, FILIPPO
2024/2025
Abstract
The Molten Salt Fast Reactor (MSFR) is one of the Generation IV technologies selected by the Generation IV International Forum. It is a liquid fuel reactor that uses a salt mixture containing fluorides of fertile and fissile materials. This feature allows for on line fuel treatment and fission product removal. Which is usually not common in commercial reactors. Most of the scientific tools for nuclear reactor neutronic simulation are designed for solid fuel reactors, which do not have an online fuel treatment. For this reason, simulation tools like SERPENT are modified to properly account for these MSFR features within the EVOL, MARS and SAMOSAFER projects. The aim of this thesis is to test an additional open-source simulation tool, i.e., the Monte Carlo neutron and photon transport code OpenMC. Its capability in simulating and properly describing the reactor behavior is tested using well-known benchmarks. The static benchmark involves the study of the criticality, some neutronic parameters, the neutron spectrum, and the evaluation of the feedback coefficients with direct method, for both uranium-started and transuranic-started initial fuel compositions. The results obtained are compared and verified against those of the partners in the EVOL and MARS projects. In most cases, good agreement is found, but discrepancies are observed for keff calculations of the transuranic-started fuel when adopting different libraries. Furthermore, the βeff evaluations are inconsistent and they will require studies using more accurate methods. The functionalities provided by OpenMC for simulating the online fuel treatment need to be tested. For this reason, a depletion benchmark is performed following the Deliverable D3.6 indications of the SAMOSAFER project. This thesis includes the study of Step 0 and Step 1. For both steps, the nuclide inventory after five years of simulation is evaluated against those obtained by the other SAMOSAFER project partners. Step 0 simulation involves the radioactive decay of a five-year irradiated fuel composition; this is performed with and without including the modeling of the nuclide removal systems. OpenMC provides accurate results thanks to its ‘add_transfer_rate’ method, which allows it to correctly implement the nuclide removal. Step 1 adds to Step 0 the irradiation phenomenon and simulates a ²³³U-started initial fuel load. It is conducted using the official depletion chains of OpenMC but also extending them to include more reaction channels. This extension leads to good light and heavy elements predictions when using the ENDFB 8.0 derived chain. Reactions like (n,t) and (n,d) open important channels for H and He production. OpenMC shows comparable results but with a slight underestimation of medium-Z elements that must be further investigated.File | Dimensione | Formato | |
---|---|---|---|
2025_7_Belotti.pdf
non accessibile
Descrizione: Testo della Tesi di Laurea Magistrale in Ingegneria Nucleare
Dimensione
17.99 MB
Formato
Adobe PDF
|
17.99 MB | Adobe PDF | Visualizza/Apri |
2025_7_Belotti_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
2.02 MB
Formato
Adobe PDF
|
2.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240820