Laser-plasma interaction physics is relevant for particle sources and inertial confinement fusion. Due to its complexity, numerical simulations are essential to capture the underlying physics and optimize the interaction. A high energy absorption efficiency is crucial to enhance the application performance and can be achieved exploiting nanofoams: lowdensity targets produced at NanoLab (Politecnico di Milano). They feature nm-scale structures that cannot be resolved by fluid codes, typically exploited for long-duration simulations: a kinetic approach is required. Kinetic simulations are also well-suited to evaluate the role of additional processes such as collisions. This thesis work presents a comprehensive investigation of the interaction between intense, long-duration laser pulses and nanostructured targets using the particle-in-cell code SMILEI. The research focuses on the nanostructure homogenization under irradiation and the associated computational costs. The study explores the effects of these laser pulses on nanofoam targets and seeks to provide the foundation for a semi-empirical homogenization model to be integrated into fluid codes. The results show that including collisions nearly doubles the computational cost but almost halves the homogenization time, improving the nanoparticle expansion uniformity and enabling a volumetric energy absorption. Reducing the number of particles per cell has a negligible physical impact, whereas the laser intensity strongly influences the coupling, requiring a careful parameter tuning to manage the computational resources. Increasing the nanoparticle size slows the homogenization and increases the particle energies, with comparable trends observed across different target geometries. A simulation with three aligned nanoparticles confirms that modeling a single nanoparticle effectively represents the first foam layers and demonstrates a good code scalability. Through a numerical analysis, this research reveals that the nanostructure morphology, collisions and laser intensity critically influence the laser-plasma coupling, and that tailored modeling strategies can balance physical accuracy with computational efficiency.
L’interazione laser-plasma è fondamentale nell’accelerazione di particelle e nella fusione a confinamento inerziale. Data la complessità del fenomeno, le simulazioni sono necessarie per studiare e ottimizzare l’interazione. Un’elevata efficienza di assorbimento dell’energia del laser è cruciale per migliorare le prestazioni delle sue applicazioni e può essere favorita dall’uso delle nanofoam: materiali a bassa densità realizzati presso il NanoLab (Politecnico di Milano). La scala nanometrica della loro struttura non è risolvibile dai codici fluidi, in genere usati per simulazioni lunghe, rendendo essenziale un approccio cinetico. Le simulazioni cinetiche permettono inoltre di valutare effetti aggiuntivi, come le collisioni. Questo lavoro di tesi presenta uno studio accurato dell’interazione tra impulsi laser intensi e prolungati e nanostrutture, utilizzando il codice particle-in-cell SMILEI. L’analisi si focalizza sull’omogeneizzazione delle nanostrutture sotto irraggiamento e sui relativi costi computazionali. Lo studio esamina gli effetti degli impulsi laser sulle nanofoam e mira a porre le basi per lo sviluppo di un modello semi-empirico di omogeneizzazione da integrare nei codici fluidi. I risultati indicano che le collisioni raddoppiano il costo computazionale, ma quasi dimezzano il tempo di omogeneizzazione, favorendo un assorbimento volumetrico. La riduzione del numero di particelle per cella ha effetti trascurabili, mentre l’intensità del laser incide molto sull’interazione, richiedendo un’accurata ottimizzazione dei parametri. L’aumento della dimensione delle nanoparticelle rallenta l’omogeneizzazione e aumenta l’energia delle particelle, con tendenze coerenti per diverse geometrie del bersaglio. Una simulazione con tre nanoparticelle allineate conferma che una singola nanoparticella rappresenta efficacemente i primi strati della foam e dimostra la buona scalabilità del codice. L’analisi numerica condotta evidenzia come la morfologia della nanostruttura, le collisioni e l’intensità del laser influenzino criticamente l’interazione laser-plasma, e come strategie modellistiche mirate possano bilanciare l’accuratezza fisica con l’efficienza computazionale.
Numerical study of high-power nanosecond laser pulse interaction with nanostructured materials
MALLIMACI, CLAUDIA
2024/2025
Abstract
Laser-plasma interaction physics is relevant for particle sources and inertial confinement fusion. Due to its complexity, numerical simulations are essential to capture the underlying physics and optimize the interaction. A high energy absorption efficiency is crucial to enhance the application performance and can be achieved exploiting nanofoams: lowdensity targets produced at NanoLab (Politecnico di Milano). They feature nm-scale structures that cannot be resolved by fluid codes, typically exploited for long-duration simulations: a kinetic approach is required. Kinetic simulations are also well-suited to evaluate the role of additional processes such as collisions. This thesis work presents a comprehensive investigation of the interaction between intense, long-duration laser pulses and nanostructured targets using the particle-in-cell code SMILEI. The research focuses on the nanostructure homogenization under irradiation and the associated computational costs. The study explores the effects of these laser pulses on nanofoam targets and seeks to provide the foundation for a semi-empirical homogenization model to be integrated into fluid codes. The results show that including collisions nearly doubles the computational cost but almost halves the homogenization time, improving the nanoparticle expansion uniformity and enabling a volumetric energy absorption. Reducing the number of particles per cell has a negligible physical impact, whereas the laser intensity strongly influences the coupling, requiring a careful parameter tuning to manage the computational resources. Increasing the nanoparticle size slows the homogenization and increases the particle energies, with comparable trends observed across different target geometries. A simulation with three aligned nanoparticles confirms that modeling a single nanoparticle effectively represents the first foam layers and demonstrates a good code scalability. Through a numerical analysis, this research reveals that the nanostructure morphology, collisions and laser intensity critically influence the laser-plasma coupling, and that tailored modeling strategies can balance physical accuracy with computational efficiency.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Mallimaci_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
34.81 MB
Formato
Adobe PDF
|
34.81 MB | Adobe PDF | Visualizza/Apri |
2025_07_Mallimaci_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240825