In an always connected world, access to information has become trivial. For certain fields, such as telecommunication engineering, the practical aspect of learn-by-doing cannot be neglected, even though it is often limited by hardware inaccessibility. This thesis presents the project of an affordable and extensible platform for radio frequency (RF) components analysis, designed with widely available and affordable software-defined radios (SDR) hardware, to demonstrate that meaningful RF measurements can be performed in low budget scenarios, effectively addressing the scarcity of affordable RF test equipment. The designed system comprises a HackRF SDR as test signal generator, a Nooelec Nesdr SDR as acquisition interface, both handled by a purposely written software. This work presents an in-depth hardware characterization of both SDR units, including tests for frequency response, gain linearity, intermodulation distortion (IIP3), input impedance (S11), frequency stability, and power handling. Special attention is given to identifying nonlinearities and their sources with the aim of calibrating these imperfections through specifically developed software and using external precision instruments. The software used in the hardware characterization required the control of complex instruments such as an arbitrary waveform generator and a continuous wave (CW) generator remotely. This led to the development of control scripts through the VISA interface, that were used as a base for a quick-start guide for future users of the instruments. On the software side, a modular, object-oriented framework was developed in Matlab. The software allows users to generate signals, acquire data, perform power corrected spectral analysis, and run analysis routines such as two-tone intermodulation tests, digital modulation analysis (e.g., 16-QAM) and power response measurements. The software was developed keeping as key objectives modularity and expandability, thanks to the use of software design patterns, to allow users to easily add new functionalities to the system. A major contribution of this thesis is the development of a new HackRF interface for Matlab, that overcomes existing limitations in community-developed libraries, enabling also other developers to integrate the HackRF in their Matlab code. The project is released as open-source, and all design files and code are made publicly available to encourage further adoption and development. The work concludes with suggestions for future improvements and a discussion of the results obtained. The outcome of this research activity hence provides a flexible platform for characterization of radio frequency components, with potential extension to more high-performance hardware units (used as transmitting and acquisition elements) and therefore supports the workplan of the DREAMS project, funded by the European Union under the Italian national Recovery and Resilience Plan (PNRR) of NextGeneration EU, partnership on "Telecommunications of the Future" (PE00000001 - program "Restart", Structural Project DREAMS.
In un mondo sempre connesso, l’accesso all’informazione è ormai scontato; tuttavia, in alcuni ambiti come l’ingegneria delle telecomunicazioni, l’aspetto pratico del “learning-by-doing” non può essere trascurato, sebbene sia spesso limitato dall’inaccessibilità dell’hardware. Questa tesi presenta il progetto di una piattaforma economica ed estensibile per l’analisi di componenti in radiofrequenza (RF), realizzata utilizzando hardware SDR (Software Defined Radio) ampiamente disponibile ed economico, con l’obiettivo di dimostrare che misure RF rilevanti possono essere eseguite anche in contesti a basso budget, affrontando la scarsità di strumenti di test accessibili. Il sistema progettato è composto da un HackRF SDR come generatore di segnali di test e da un Nooelec Nesdr SDR come interfaccia di acquisizione, entrambi gestiti da un software appositamente sviluppato. Il lavoro presenta una caratterizzazione approfondita dell’hardware impiegato, includendo test di risposta in frequenza, linearità di guadagno, distorsione da intermodulazione (IIP3), impedenza di ingresso (S11), stabilità in frequenza e gestione della potenza. Particolare attenzione è dedicata all’identificazione delle non linearità e delle loro cause, utilizzando strumenti di precisione, con lo scopo di calibrare tali imperfezioni tramite software dedicato. Il software necessario per la caratterizzazione ha richiesto il controllo remoto di strumenti complessi come generatori di forma d’onda arbitraria e generatori a onda continua (CW), portando allo sviluppo di script operanti attraverso l’interfaccia VISA, a partire dai quali è stata redatta una guida rapida per i futuri utenti Dal lato software, è stato realizzato un framework modulare ad oggetti in Matlab. Il software consente la generazione di segnali, l’acquisizione dei dati, l’analisi spettrale calibrata in potenza e l’esecuzione di test come la misura dell’intermodulazione con test a due toni, l’analisi di modulazioni digitali (es. 16-QAM) e la misura automatizzata della curva di risposta in potenza di un amplificatore. L’architettura è stata progettata con particolare attenzione alla modularità e all’espandibilità, mediante l’uso di software design pattern, così da permettere ad utenti che ne trovassero bisogno di integrare facilmente nuove funzionalità. Un contributo rilevante della tesi è lo sviluppo di una nuova interfaccia HackRF per Matlab, che supera le limitazioni delle librerie esistenti sviluppate dalla community, consentendo anche ad altri sviluppatori di integrare HackRF nei propri progetti Matlab. Il progetto è distribuito in formato open-source e tutti i file e il codice sono pubblicamente disponibili per favorirne l’adozione e l’ulteriore sviluppo. Il lavoro si conclude con una discussione sui risultati ottenuti e con alcune proposte per miglioramenti futuri. Il risultato di questa attività di ricerca fornisce quindi una piattaforma flessibile per la caratterizzazione di componenti a radiofrequenza, con potenziali estensioni a unità hardware ad alte prestazioni (utilizzate come dispositivi di trasmissione e acquisizione) e supporta pertanto il piano di lavoro del progetto DREAMS, finanziato dall'Unione Europea nell'ambito del Piano Nazionale di Ripresa e Resilienza (PNRR) italiano di NextGeneration EU, partnership "Telecomunicazioni del Futuro" (PE00000001 – programma "RESTART", Progetto Strutturale DREAMS).
SDR-based automatic RF component analyzer
Vogrig, Alessandro Andrea
2024/2025
Abstract
In an always connected world, access to information has become trivial. For certain fields, such as telecommunication engineering, the practical aspect of learn-by-doing cannot be neglected, even though it is often limited by hardware inaccessibility. This thesis presents the project of an affordable and extensible platform for radio frequency (RF) components analysis, designed with widely available and affordable software-defined radios (SDR) hardware, to demonstrate that meaningful RF measurements can be performed in low budget scenarios, effectively addressing the scarcity of affordable RF test equipment. The designed system comprises a HackRF SDR as test signal generator, a Nooelec Nesdr SDR as acquisition interface, both handled by a purposely written software. This work presents an in-depth hardware characterization of both SDR units, including tests for frequency response, gain linearity, intermodulation distortion (IIP3), input impedance (S11), frequency stability, and power handling. Special attention is given to identifying nonlinearities and their sources with the aim of calibrating these imperfections through specifically developed software and using external precision instruments. The software used in the hardware characterization required the control of complex instruments such as an arbitrary waveform generator and a continuous wave (CW) generator remotely. This led to the development of control scripts through the VISA interface, that were used as a base for a quick-start guide for future users of the instruments. On the software side, a modular, object-oriented framework was developed in Matlab. The software allows users to generate signals, acquire data, perform power corrected spectral analysis, and run analysis routines such as two-tone intermodulation tests, digital modulation analysis (e.g., 16-QAM) and power response measurements. The software was developed keeping as key objectives modularity and expandability, thanks to the use of software design patterns, to allow users to easily add new functionalities to the system. A major contribution of this thesis is the development of a new HackRF interface for Matlab, that overcomes existing limitations in community-developed libraries, enabling also other developers to integrate the HackRF in their Matlab code. The project is released as open-source, and all design files and code are made publicly available to encourage further adoption and development. The work concludes with suggestions for future improvements and a discussion of the results obtained. The outcome of this research activity hence provides a flexible platform for characterization of radio frequency components, with potential extension to more high-performance hardware units (used as transmitting and acquisition elements) and therefore supports the workplan of the DREAMS project, funded by the European Union under the Italian national Recovery and Resilience Plan (PNRR) of NextGeneration EU, partnership on "Telecommunications of the Future" (PE00000001 - program "Restart", Structural Project DREAMS.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Vogrig_Executive_Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive summary
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
2025_07_Vogrig_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
15.22 MB
Formato
Adobe PDF
|
15.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240835