In recent years, biomaterials have established themselves as a concrete alternative to conventional materials, thanks to their biodegradability and renewability. In this context, the designer’s role is evolving into that of a facilitator of material innovation and a promoter of regenerative processes, operating at the intersection of design, biology, and environmental sustainability. This thesis investigates the application potential of bio-composites developed from agri-food waste, specifically eggshells and rice husks, for the creation of biodegradable materials with good mechanical performance. Although these waste materials exhibit structural, antifungal, and hydrophobic properties, over 90% are still disposed of as waste in Italy, despite an annual availability of approximately 90,000 tons of eggshells and 280,000 tons of rice husks. Within this scenario, the thesis aims to explore their reuse as a local resource for sustainable design. The research is structured into three main phases: an initial phase of theoretical framing and analysis of the state of the art; a second experimental phase conducted using the Material Driven Design (MDD) method and a DIY approach; and finally, a design-oriented application phase. The experimental focus was directed at developing a bio-composite compatible with LDM (Liquid Deposition Modeling) 3D printing technology, through tests on particle sizes, component ratios, and post-processing techniques. The most promising material mixture, labeled #11_15.2, demonstrated good mechanical properties, adequate plasticity for additive manufacturing, and excellent results in terms of degradability, engraving, and post-print processing. Based on the results obtained, the identified application area was that of temporary architecture, where the use of non-renewable materials and the short life cycle of structures generate a significant environmental impact. The project resulted in the development of a modular system of bio-components that can be assembled and disassembled. At the end of their life cycle, the modules can be dissolved in water, reducing waste volume by up to 80% and producing a residue that can be reused as fertilizer thus offering a tangible example of regenerative and circular design.
Negli ultimi anni, i biomateriali si sono affermati come una concreta alternativa ai materiali convenzionali grazie alla loro biodegradabilità e rinnovabilità. In questo contesto, il ruolo del designer evolve verso quello di facilitatore di innovazione materiale e promotore di processi rigenerativi, agendo all’intersezione tra design, biologia e sostenibilità ambientale. La tesi indaga il potenziale applicativo di bio-compositi sviluppati a partire da scarti agroalimentari, in particolare gusci d’uovo e lolla di riso, per la realizzazione di materiali biodegradabili dalle buone prestazioni meccaniche. Sebbene tali scarti presentino proprietà strutturali, antifungine e idrofobiche, in Italia oltre il 90% viene ancora smaltito come rifiuto, nonostante la disponibilità annua di circa 90.000 tonnellate di gusci d’uovo e 280.000 tonnellate di lolla di riso. In questo scenario, la tesi si pone l’obiettivo di esplorarne il riutilizzo come risorsa locale per il design sostenibile. La ricerca si articola in tre fasi principali: una prima fase di inquadramento teorico e analisi dello stato dell’arte, una seconda fase sperimentale condotta secondo il metodo del Material Driven Design (MDD) e un approccio DIY, e infine una fase progettuale applicativa. Il focus sperimentale è stato orientato allo sviluppo di un bio-composito compatibile con la stampa 3D a tecnologia LDM (Liquid Deposition Modeling), attraverso prove su granulometrie, proporzioni dei componenti e processi di post-lavorazione. Il mixting materico più promettente, denominato #11_15.2, ha dimostrato buone proprietà meccaniche, plasticità adeguata per la fabbricazione additiva, e ottimi risultati in termini di degradabilità, engraving e lavorazioni post-stampa. Sulla base dei risultati ottenuti, è stato identificato come ambito applicativo quello delle architetture temporanee, in cui l’impiego di materiali non rinnovabili e il breve ciclo di vita delle strutture generano un impatto ambientale significativo. Il progetto si è concretizzato nello sviluppo di un sistema modulare di bio-componenti assemblabili e disassemblabili. A fine vita, i moduli possono essere sciolti in acqua, riducendo fino all’80% l’ingombro del rifiuto e producendo un residuo riutilizzabile come fertilizzante, offrendo così un esempio concreto di design rigenerativo e circolare.
RAWABI : materia imperfetta per architetture temporanee
Lelli, Niccolò
2024/2025
Abstract
In recent years, biomaterials have established themselves as a concrete alternative to conventional materials, thanks to their biodegradability and renewability. In this context, the designer’s role is evolving into that of a facilitator of material innovation and a promoter of regenerative processes, operating at the intersection of design, biology, and environmental sustainability. This thesis investigates the application potential of bio-composites developed from agri-food waste, specifically eggshells and rice husks, for the creation of biodegradable materials with good mechanical performance. Although these waste materials exhibit structural, antifungal, and hydrophobic properties, over 90% are still disposed of as waste in Italy, despite an annual availability of approximately 90,000 tons of eggshells and 280,000 tons of rice husks. Within this scenario, the thesis aims to explore their reuse as a local resource for sustainable design. The research is structured into three main phases: an initial phase of theoretical framing and analysis of the state of the art; a second experimental phase conducted using the Material Driven Design (MDD) method and a DIY approach; and finally, a design-oriented application phase. The experimental focus was directed at developing a bio-composite compatible with LDM (Liquid Deposition Modeling) 3D printing technology, through tests on particle sizes, component ratios, and post-processing techniques. The most promising material mixture, labeled #11_15.2, demonstrated good mechanical properties, adequate plasticity for additive manufacturing, and excellent results in terms of degradability, engraving, and post-print processing. Based on the results obtained, the identified application area was that of temporary architecture, where the use of non-renewable materials and the short life cycle of structures generate a significant environmental impact. The project resulted in the development of a modular system of bio-components that can be assembled and disassembled. At the end of their life cycle, the modules can be dissolved in water, reducing waste volume by up to 80% and producing a residue that can be reused as fertilizer thus offering a tangible example of regenerative and circular design.| File | Dimensione | Formato | |
|---|---|---|---|
|
RAWABI - Materia Imperfetta per Architetture Temporanee.pdf
solo utenti autorizzati a partire dal 02/07/2026
Dimensione
95.72 MB
Formato
Adobe PDF
|
95.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240855