Type 1 diabetes (T1D) is a multifactorial autoimmune disease driven by the interaction between genetic predisposition and poorly characterized environmental factors. This study explores the genetic and epigenetic landscape of T1D by integrating genomic variants, DNA-methylation profiles and three epigenetic clocks through a workflow that combines network modelling, advanced machine-learning and functional enrichment within a systems-biology framework. This integrated approach has yielded findings of considerable biological relevance. First, the gene-expression analysis comprises 76 variants in known lncRNAs converging on six lncRNAs correlated with 127 genes involved in primary cilium assembly. These genes map to three functional modules basal--body anchoring, periciliary vesicular trafficking and intraflagellar transport-highlighting a cellular axis previously overlooked in beta-cell vulnerability. In parallel, the epigenetic analysis revealed signals of accelerated epigenetic ageing in T1D patients compared with healthy controls, whereas the blood-derived clock showed a slight deceleration, suggesting a T1D-specific remodelling of the immune compartment. Moreover, the assessment of T1D-specific methylation patterns versus control groups, followed by functional enrichment, distinguishes hypermethylated islands - linked to weakened antioxidant defence, reduced barrier integrity and impaired mitochondrial recycling - from hypomethylated islands that mirror the chronic inflammation characteristic of the disease, along with epigenetic alterations marking autoimmunity. Overall, the pipeline - based on public genomic and epigenomic resources - demonstrates that the computational integration of variants, the methylome and epigenetic clocks enables the derivation of composite markers useful for risk stratification in multifactorial diseases such as T1D.
Il diabete di tipo 1 (T1D) è una malattia autoimmune multifattoriale, determinata dall’interazione tra predisposizione genetica e fattori ambientali poco caratterizzati. Questa ricerca esplora il panorama genetico ed epigenetico del T1D integrando varianti genomiche, profili di metilazione e tre orologi epigenetici - mediante un workflow che combina modellazione di rete, machine-learning avanzato e arricchimento funzionale, seguendo un approccio di biologia dei sistemi. Questo approccio integrato ha prodotto risultati di grande rilevanza biologica. In primo luogo, l’analisi dell’espressione genica comprende 76 varianti in lncRNA noti che convergono in sei lncRNA, correlati con 127 geni coinvolti nell’assemblaggio del ciglio primario, un organello sensoriale presente in quasi tutte le cellule. Questi geni risultano distribuiti su tre moduli funzionali centrati su ancoraggio del corpo basale, traffico vescicolare periciliare e trasporto intraflagellare, delineando un asse cellulare finora trascurato nella vulnerabilità delle cellule beta pancreatiche. Parallelamente, l’analisi epigenetica ha rivelato segnali di invecchiamento epigenetico accelerato nei pazienti T1D rispetto ai controlli sani, mentre il clock ematico ha evidenziato una lieve decelerazione, suggerendo un rimodellamento specifico del comparto immunitario nel diabete di tipo 1. Inoltre, valutando pattern specifici di metilazione nel T1D confrontato con i gruppi di controllo, l'arricchimento funzionale distingue le isole ipermetilate - associate a difesa antiossidante attenuata, integrità di barriera e riciclo mitocondriale ridotti - e isole ipometilate, che riflettono l'infiammazione cronica tipica della condizione, oltre a alterazioni epigenetiche che marcano l’autoimmunità. Nel complesso, la pipeline basata su risorse genomiche ed epigenomiche pubbliche dimostra che l’integrazione computazionale di varianti, metiloma e clock epigenetici permette di derivare marcatori compositi utili alla stratificazione del rischio nelle malattie multifattoriali.
Exploring genetic and epigenetic variation in Type 1 Diabetes
MONDI, ANNA
2024/2025
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease driven by the interaction between genetic predisposition and poorly characterized environmental factors. This study explores the genetic and epigenetic landscape of T1D by integrating genomic variants, DNA-methylation profiles and three epigenetic clocks through a workflow that combines network modelling, advanced machine-learning and functional enrichment within a systems-biology framework. This integrated approach has yielded findings of considerable biological relevance. First, the gene-expression analysis comprises 76 variants in known lncRNAs converging on six lncRNAs correlated with 127 genes involved in primary cilium assembly. These genes map to three functional modules basal--body anchoring, periciliary vesicular trafficking and intraflagellar transport-highlighting a cellular axis previously overlooked in beta-cell vulnerability. In parallel, the epigenetic analysis revealed signals of accelerated epigenetic ageing in T1D patients compared with healthy controls, whereas the blood-derived clock showed a slight deceleration, suggesting a T1D-specific remodelling of the immune compartment. Moreover, the assessment of T1D-specific methylation patterns versus control groups, followed by functional enrichment, distinguishes hypermethylated islands - linked to weakened antioxidant defence, reduced barrier integrity and impaired mitochondrial recycling - from hypomethylated islands that mirror the chronic inflammation characteristic of the disease, along with epigenetic alterations marking autoimmunity. Overall, the pipeline - based on public genomic and epigenomic resources - demonstrates that the computational integration of variants, the methylome and epigenetic clocks enables the derivation of composite markers useful for risk stratification in multifactorial diseases such as T1D.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Mondi_Executive Summary_02.pdf
non accessibile
Dimensione
3.96 MB
Formato
Adobe PDF
|
3.96 MB | Adobe PDF | Visualizza/Apri |
2025_07_Mondi.pdf
non accessibile
Dimensione
8.43 MB
Formato
Adobe PDF
|
8.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240872