This thesis investigates the role of manoeuvreing agility in various satellite constellation architectures to enhance the capability and efficiency of Earth observation for environmental disaster monitoring. In recent years, a new paradigm known as the New Space Economy has emerged in satellite constellation design. It is based on production of constellations of small satellites, rather than large, high-performance satellites, offering high revisit frequency and wide spatial coverage. Simultaneously, emerging technologies are being developed to further increase satellite autonomy and responsiveness. These include onboard data processing, autonomous scheduling based on Artificial Intelligence, dynamic reorganization of operations, and the generation of early warning messages for environmental disasters. Additionally, modern satellite platforms are designed with high manoeuvreing agility, allowing sensors to be rapidly reoriented toward areas of interest. The thesis presents a sensitivity analysis of agility across different orbital configurations, assessing system performance in emergency scenarios involving multiple environmental disasters in Italy. Key performance indicators such as the percentage of completed acquisitions relative to the total requested, average task completion time, and the delay between potential and actual acquisitions are evaluated, as these are critical for effective rapid disaster response. Based on the insights gained, a multi-objective genetic algorithm (NSGA-II) is implemented to optimize acquisition scheduling, aiming to maximize event detection, minimize acquisition delays, and reduce manoeuvreing costs. This work has been carried out in collaboration with the Department of Aerospace Science and Technology of Politecnico di Milano and Thales Alenia Space Italia S.p.A.
Questa tesi analizza il ruolo dell’agilità di manovra in diverse costellazioni satellitari nel migliorare la capacità e l’efficienza dell’osservazione della Terra per il monitoraggio dei disastri ambientali. Negli ultimi anni si è sviluppato un nuovo paradigma nella progettazione delle costellazioni, noto come New Space Economy, basato sull’impiego di piccoli satelliti invece che complessi satelliti di grandi dimensioni con alte performance. Questo approccio ha favorito lo sviluppo di costellazioni agili e di dimensioni ridotte, capaci di garantire un’elevata frequenza di rivisitazione e un’ampia copertura spaziale. Parallelamente, nuove tecnologie in fase di sviluppo stanno aumentando l’autonomia e la reattività dei satelliti. Tra queste: l’elaborazione dati a bordo (on-board processing), lo scheduling autonomo basato su intelligenza artificiale, la riorganizzazione dinamica delle operazioni e la generazione di messaggi di pre-allerta. Inoltre, le nuove piattaforme satellitari presentano una maggiore agilità di manovra, che consente di orientare rapidamente i sensori verso le aree di interesse. La tesi propone un’analisi dell’impatto dell’agilità su diverse configurazioni orbitali, at- traverso uno studio di sensitività preliminare volto a valutare le prestazioni in scenari di emergenza caratterizzati da molteplici disastri ambientali sul territorio italiano. In particolare, sono stati analizzati parametri chiave come la percentuale di acquisizioni completate rispetto a quelle richieste, il tempo medio di completamento delle task e il ritardo tra acquisizioni potenziali ed effettive—tutti elementi critici per un monitoraggio tempestivo. Sulla base dei risultati ottenuti, è stato implementato un algoritmo genetico multi-obiettivo (NSGA-II) per ottimizzare lo scheduling delle acquisizioni, con l’obiettivo di massimizzare la detection degli eventi, minimizzare i ritardi e ridurre il costo delle manovre. Questo lavoro è stato sviluppato in collaborazione con il Dipartimento di Scienze e Tecnologie Aerospaziali del Politecnico di Milano e Thales Alenia Space Italia S.p.A.
Agile SAR satellite constellations for natural disaster monitoring: architectural trade off and multi-objective optimization scheduling
Papi, Jacopo
2024/2025
Abstract
This thesis investigates the role of manoeuvreing agility in various satellite constellation architectures to enhance the capability and efficiency of Earth observation for environmental disaster monitoring. In recent years, a new paradigm known as the New Space Economy has emerged in satellite constellation design. It is based on production of constellations of small satellites, rather than large, high-performance satellites, offering high revisit frequency and wide spatial coverage. Simultaneously, emerging technologies are being developed to further increase satellite autonomy and responsiveness. These include onboard data processing, autonomous scheduling based on Artificial Intelligence, dynamic reorganization of operations, and the generation of early warning messages for environmental disasters. Additionally, modern satellite platforms are designed with high manoeuvreing agility, allowing sensors to be rapidly reoriented toward areas of interest. The thesis presents a sensitivity analysis of agility across different orbital configurations, assessing system performance in emergency scenarios involving multiple environmental disasters in Italy. Key performance indicators such as the percentage of completed acquisitions relative to the total requested, average task completion time, and the delay between potential and actual acquisitions are evaluated, as these are critical for effective rapid disaster response. Based on the insights gained, a multi-objective genetic algorithm (NSGA-II) is implemented to optimize acquisition scheduling, aiming to maximize event detection, minimize acquisition delays, and reduce manoeuvreing costs. This work has been carried out in collaboration with the Department of Aerospace Science and Technology of Politecnico di Milano and Thales Alenia Space Italia S.p.A.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Papi_Thesis.pdf
solo utenti autorizzati a partire dal 02/07/2026
Descrizione: Thesis
Dimensione
20.28 MB
Formato
Adobe PDF
|
20.28 MB | Adobe PDF | Visualizza/Apri |
2025_07_Papi_Executive_summary.pdf
solo utenti autorizzati a partire dal 02/07/2026
Descrizione: Executive Summary
Dimensione
701.36 kB
Formato
Adobe PDF
|
701.36 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240897