Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive interstitial lung disease marked by irreversible lung scarring, loss of alveolar architecture and episodes of acute exacerbations often culminating in respiratory failure and death. Due to its complex pathogenesis and limited therapeutic options, there is a strong need for advanced in vitro models that can recapitulate disease mechanisms and evaluate novel treatment strategies. The present study aims to develop a human-relevant Lung-on-a-Chip model designed to mimic both stromal and epithelial microenvironments characteristic of IPF, enabling the investigation of cellular responses to chemical and mechanical cues under controlled conditions and the evaluation of the efficacy of therapeutics. To recreate and compare fibrotic conditions within the stromal compartment, two distinct chemical stimuli were employed: TGF-β1, the gold standard cytokine for inducing fibroblast activation, and IPF-RC, a complex cocktail of profibrotic cytokines that closely mimics the pathological milieu observed in idiopathic pulmonary fibrosis. This comparative approach enabled the evaluation of differential fibroblast responses and the assessment of drug efficacy under distinct profibrotic conditions. At first, the FDA-approved antifibrotic drug nintedanib was used to pharmacologically validate the stromal compartment. Subsequently, the model was leveraged to test the efficacy of a selective tankyrase inhibitor, OM-153, providing preliminary evidence of antifibrotic activity in 3D fibroblast cultures. In parallel, cyclic mechanical stretching was applied to fibroblasts and alveolar epithelial cells, highlighting how biomechanical cues influence disease-relevant phenotypic transitions, such as fibroblast-to-myofibroblast transition and epithelial-to-mesenchymal transition. Two mechanical stimulation regimens were tested: a sinusoidal 10% uniaxial tensile strain at 0.2 Hz to mimic physiological breathing, and the same strain pattern at 0.6 Hz to replicate the elevated respiratory rate typically observed in IPF patients. Overall, this study highlights the utility of a human-relevant, mechanically active Lung-on-a-Chip model as an in vitro platform to investigate IPF mechanisms and enable preclinical therapeutic screening.
La fibrosi polmonare idiopatica (IPF) è una malattia polmonare interstiziale cronica e progressiva caratterizzata da cicatrizzazione irreversibile del tessuto polmonare, perdita dell’architettura alveolare ed episodi di esacerbazioni acute che spesso culminano in insufficienza respiratoria e morte. A causa della sua complessa patogenesi e delle limitate opzioni terapeutiche, vi è una forte necessità di modelli avanzati in vitro che possano ricapitolare i meccanismi della malattia e supportare la valutazione di nuove strategie terapeutiche. Il presente studio si propone di sviluppare un modello Lung-on-a-Chip fisiologicamente rilevante progettato per mimare i microambienti stromale ed epiteliale caratteristici dell’IPF, consentendo l’analisi delle risposte cellulari a stimoli chimici e meccanici in condizioni controllate, nonché la valutazione dell’efficacia di farmaci antifibrotici. Per riprodurre e confrontare differenti condizioni fibrotiche nel compartimento stromale, sono stati impiegati due stimoli chimici distinti: TGF-β1, la citochina di riferimento per l’attivazione dei fibroblasti, e IPF-RC, un cocktail complesso di citochine profibrotiche in grado di simulare in modo più rappresentativo il microambiente patologico dell’IPF. Questo approccio ha permesso di confrontare le risposte cellulari in presenza di stimoli diversi e di valutare l’efficacia terapeutica in condizioni patologiche differenziate. In una fase iniziale, il farmaco antifibrotico nintedanib, approvato dalla FDA, è stato utilizzato per validare farmacologicamente il compartimento stromale. Successivamente, il modello è stato utilizzato per testare l’efficacia di OM-153, un inibitore selettivo della tankirasi, fornendo evidenze preliminari di attività antifibrotica in colture 3D di fibroblasti. In parallelo, una stimolazione meccanica ciclica è stata applicata a fibroblasti e cellule epiteliali alveolari, evidenziando come i segnali biomeccanici influenzino transizioni fenotipiche rilevanti per la patologia, come la transizione da fibroblasto a miofibroblasto e quella da epiteliale a mesenchimale. Sono stati testati due regimi di stimolazione meccanica: una deformazione sinusoidale del 10% in trazione uniassiale a 0,2 Hz per simulare la respirazione fisiologica, e un pattern di deformazione analogo a 0,6 Hz per replicare l’aumentata frequenza respiratoria comunemente riscontrata in pazienti affetti da IPF. In conclusione, questo studio evidenzia l'utilità di un modello di Lung-on-a-Chip meccanicamente attivo e fisiologicamente rilevante come piattaforma in vitro per indagare i meccanismi dell’IPF e supportare lo sviluppo preclinico di potenziali terapie.
A Lung-on-a-chip model of Idiophatic Pulmonary Fibrosis replicating stromal and epithelial compartments, designed to assess the effects of mechanical and chemical stimuli and to test the efficacy of therapeutics
Rona, Elisa
2024/2025
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive interstitial lung disease marked by irreversible lung scarring, loss of alveolar architecture and episodes of acute exacerbations often culminating in respiratory failure and death. Due to its complex pathogenesis and limited therapeutic options, there is a strong need for advanced in vitro models that can recapitulate disease mechanisms and evaluate novel treatment strategies. The present study aims to develop a human-relevant Lung-on-a-Chip model designed to mimic both stromal and epithelial microenvironments characteristic of IPF, enabling the investigation of cellular responses to chemical and mechanical cues under controlled conditions and the evaluation of the efficacy of therapeutics. To recreate and compare fibrotic conditions within the stromal compartment, two distinct chemical stimuli were employed: TGF-β1, the gold standard cytokine for inducing fibroblast activation, and IPF-RC, a complex cocktail of profibrotic cytokines that closely mimics the pathological milieu observed in idiopathic pulmonary fibrosis. This comparative approach enabled the evaluation of differential fibroblast responses and the assessment of drug efficacy under distinct profibrotic conditions. At first, the FDA-approved antifibrotic drug nintedanib was used to pharmacologically validate the stromal compartment. Subsequently, the model was leveraged to test the efficacy of a selective tankyrase inhibitor, OM-153, providing preliminary evidence of antifibrotic activity in 3D fibroblast cultures. In parallel, cyclic mechanical stretching was applied to fibroblasts and alveolar epithelial cells, highlighting how biomechanical cues influence disease-relevant phenotypic transitions, such as fibroblast-to-myofibroblast transition and epithelial-to-mesenchymal transition. Two mechanical stimulation regimens were tested: a sinusoidal 10% uniaxial tensile strain at 0.2 Hz to mimic physiological breathing, and the same strain pattern at 0.6 Hz to replicate the elevated respiratory rate typically observed in IPF patients. Overall, this study highlights the utility of a human-relevant, mechanically active Lung-on-a-Chip model as an in vitro platform to investigate IPF mechanisms and enable preclinical therapeutic screening.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Rona_Elisa_Thesis.pdf
non accessibile
Descrizione: Tesi
Dimensione
35.6 MB
Formato
Adobe PDF
|
35.6 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Rona_Elisa_Executive.pdf
non accessibile
Descrizione: Executive summary
Dimensione
4.36 MB
Formato
Adobe PDF
|
4.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240916