The swift incorporation of renewable energy sources into contemporary power system has highlighted the essential function of high-power inverters in facilitating dependable, efficient and grid-compliant energy conversion. This thesis offers a thorough thematic analysis of inverter technologies applicable to many contexts, including household micro-grids and utility-scale wind and solar farms. This thesis starts with the review of renewable generation profiles, including solar, wind, hydro, biomass and hybrid systems, e then analyze the evolution of inverter specifications in topologies and relation to the intermittency and voltage characteristics of each resource and analysis of key inverter topology is conducted in composing central, string and modular multi-level converters as well as Innovative medium voltage string designs. Particular emphasis is placed on sophisticated modulation techniques (SPWM, SVPWM, multi-level approaches) and grid-forming control to facilitate frequency stability and black-start functionalities in low-inertia environments. Material advancements, particularly wide-bandgap semiconductors (SiC, GaN) and next generation conductors (graphene, carbon nanotubes), are assessed for their effects on efficiency, thermal management and power density. Complementary technologies such as permanent magnet synchronous machines battery and supercapacitor storage and auxiliary power units are included into inverter system to improve resilience and enable predictive maintenance using machine learning diagnostics. The thesis Clarifies actual issues in arc fault mitigation multi-level synchronization and adherence to rigorous grid codes through comprehensive case studies of offshore wind hubs and extensive solar farms. Finally, the study identifies critical trade-offs in cost, scalability, cybersecurity and cooling for next generation inverter platforms, suggesting potential research avenues in AI driven controls, quantum switching devices and modular plug and play design this evaluation seeks to assist researchers and industry partners in creating resilient high performance inverter solutions essential for sustainable energy transition.
La rapida integrazione delle fonti energetiche rinnovabili nei sistemi energetici contemporanei ha evidenziato la funzione essenziale degli inverter ad alta potenza nel facilitare una conversione energetica affidabile, efficiente e conforme alle normative di rete. Questa tesi offre un'analisi tematica approfondita delle tecnologie degli inverter applicabili a numerosi contesti, tra cui microreti domestiche e parchi eolici e solari su scala industriale. La tesi inizia con l'analisi dei profili di generazione da fonti rinnovabili, inclusi sistemi solari, eolici, idroelettrici, a biomassa e ibridi, per poi analizzare l'evoluzione delle specifiche degli inverter in termini di topologie e relazione con le caratteristiche di intermittenza e tensione di ciascuna risorsa. Viene inoltre condotta un'analisi delle topologie chiave degli inverter nella composizione di convertitori multilivello centrali, di stringa e modulari, nonché di progetti innovativi di stringhe a media tensione. Particolare enfasi viene posta sulle sofisticate tecniche di modulazione (SPWM, SVPWM, approcci multilivello) e sul controllo di formazione della rete, che facilitano la stabilità di frequenza e le funzionalità di black-start in ambienti a bassa inerzia. I progressi nei materiali, in particolare i semiconduttori a banda larga (SiC, GaN) e i conduttori di nuova generazione (grafene, nanotubi di carbonio), vengono valutati per i loro effetti su efficienza, gestione termica e densità di potenza. Tecnologie complementari come macchine sincrone a magneti permanenti, batterie e supercondensatori, sistemi di accumulo e unità di alimentazione ausiliarie vengono integrate nel sistema inverter per migliorare la resilienza e consentire la manutenzione predittiva utilizzando la diagnostica basata sull'apprendimento automatico. La tesi chiarisce le problematiche reali nella mitigazione dei guasti da arco elettrico, nella sincronizzazione multilivello e nell'aderenza a rigorosi codici di rete attraverso casi di studio completi di hub eolici offshore e grandi parchi solari. Infine, lo studio identifica compromessi critici in termini di costi, scalabilità, sicurezza informatica e raffreddamento per le piattaforme inverter di nuova generazione, suggerendo potenziali percorsi di ricerca nei controlli basati sull'intelligenza artificiale, nei dispositivi di commutazione quantistica e nella progettazione modulare plug and play. Questa valutazione mira ad assistere ricercatori e partner industriali nella creazione di soluzioni inverter resilienti e ad alte prestazioni, essenziali per una transizione energetica sostenibile.
High-power inverter for modern electric grids based on large-scale renewable sources
SIDDIQUI, MUHAMMAD ADAIN;UMER, MUHAMMAD
2024/2025
Abstract
The swift incorporation of renewable energy sources into contemporary power system has highlighted the essential function of high-power inverters in facilitating dependable, efficient and grid-compliant energy conversion. This thesis offers a thorough thematic analysis of inverter technologies applicable to many contexts, including household micro-grids and utility-scale wind and solar farms. This thesis starts with the review of renewable generation profiles, including solar, wind, hydro, biomass and hybrid systems, e then analyze the evolution of inverter specifications in topologies and relation to the intermittency and voltage characteristics of each resource and analysis of key inverter topology is conducted in composing central, string and modular multi-level converters as well as Innovative medium voltage string designs. Particular emphasis is placed on sophisticated modulation techniques (SPWM, SVPWM, multi-level approaches) and grid-forming control to facilitate frequency stability and black-start functionalities in low-inertia environments. Material advancements, particularly wide-bandgap semiconductors (SiC, GaN) and next generation conductors (graphene, carbon nanotubes), are assessed for their effects on efficiency, thermal management and power density. Complementary technologies such as permanent magnet synchronous machines battery and supercapacitor storage and auxiliary power units are included into inverter system to improve resilience and enable predictive maintenance using machine learning diagnostics. The thesis Clarifies actual issues in arc fault mitigation multi-level synchronization and adherence to rigorous grid codes through comprehensive case studies of offshore wind hubs and extensive solar farms. Finally, the study identifies critical trade-offs in cost, scalability, cybersecurity and cooling for next generation inverter platforms, suggesting potential research avenues in AI driven controls, quantum switching devices and modular plug and play design this evaluation seeks to assist researchers and industry partners in creating resilient high performance inverter solutions essential for sustainable energy transition.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Siddiqui_Umer.pdf
accessibile in internet per tutti
Descrizione: High-Power Inverter for Modern Electric Grids based on Large-Scale Renewable Sources
Dimensione
5.06 MB
Formato
Adobe PDF
|
5.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240918