In the past decades, the introduction of leading-edge tubercles as means of flow control has gained popularity. Inspired by the pectoral flippers of humpback whales, tubercles are hypothesized to improve post-stall behaviour and mitigate the severity of the stall in low Reynolds number regimes. This behaviour suggests that the application of leading-edge tubercles could be beneficial for the performances of small-scale UAV propellers which typically operate at low Reynolds numbers and experience severe stall at low angles of attack. While the effects of leading-edge tubercles on airfoils and wings have been widely studied, the effects on propellers’ aerodynamic performances are still under investigation. In particular, little is known on how tubercles may affect the pre-stall performances for a propeller. An experimental campaign was conducted using baseline and tubercled propellers in controlled environmental chambers simulating altitudes up to 9 000m. The objective is to assess the propellers’ performances with varying Reynolds numbers in hovering conditions. To complement the experimental data, a numerical model based on Blade Element Momentum Theory (BEMT) was developed and enhanced using a non-linear lifting-line correction to incorporate the influence of tubercles. The results reveal that while tubercles marginally reduce peak thrust at higher Reynolds numbers, they produce slightly higher thrust for Reynolds numbers up to 90 000. However, tubercles consistently determined an increment in the propeller’s torque. The numerical model showed limitations in capturing the three-dimensional flow effects introduced by tubercles, highlighting the need for further high-fidelity simulations.
Negli ultimi decenni, l’introduzione dei tubercoli sul bordo d’attacco utilizzati come metodo di controllo del flusso ha acquisito crescente popolarità. Ispirati alle pinne pettorali delle megattere, i tubercoli si ipotizza siano efficaci nel migliorare il comportamento post-stallo e mitigare la severità dello stallo a bassi numeri di Reynolds. Questo comportamento suggerisce che l’applicazione dei tubercoli sul bordo d’attacco potrebbe essere vantaggiosa per le prestazioni dei propeller di UAV di piccola scala, i quali tipicamente operano a bassi numeri di Reynolds. Sebbene gli effetti dei tubercoli su profili alari e ali finite siano stati ampiamente studiati, la loro influenza sulle prestazioni aerodinamiche dei propeller è ancora oggetto di studio. Una campagna sperimentale è stata condotta utilizzando propeller di riferimento (baseline) e propeller con tubercoli in camere climatiche controllate, simulando altitudini fino a 9 000m. L’obiettivo è valutare le prestazioni dei propeller al variare del numero di Reynolds in condizioni di hovering. In aggiunta ai dati sperimentali, è stato sviluppato un modello numerico basato sulla Blade Element Momentum Theory (BEMT), in cui è stata inclusa una correzione basata sulla teoria della linea portante per integrare l’influenza dei tubercoli. I risultati rivelano che, sebbene i tubercoli riducano marginalmente la spinta massima ai numeri di Reynolds più elevati, essi generano una spinta leggermente superiore per numeri di Reynolds fino a 90 000. Tuttavia, i tubercoli determinano un incremento della coppia resistente del propeller. Il modello numerico mostra limitazioni nel catturare gli effetti tridimensionali del flusso indotti dai tubercoli, evidenziando la necessità di ulteriori simulazioni ad alta fedeltà.
The effect of leading-edge tubercles on a small-scale UAV propeller in hovering at low Reynolds numbers
Sapone, Federica
2024/2025
Abstract
In the past decades, the introduction of leading-edge tubercles as means of flow control has gained popularity. Inspired by the pectoral flippers of humpback whales, tubercles are hypothesized to improve post-stall behaviour and mitigate the severity of the stall in low Reynolds number regimes. This behaviour suggests that the application of leading-edge tubercles could be beneficial for the performances of small-scale UAV propellers which typically operate at low Reynolds numbers and experience severe stall at low angles of attack. While the effects of leading-edge tubercles on airfoils and wings have been widely studied, the effects on propellers’ aerodynamic performances are still under investigation. In particular, little is known on how tubercles may affect the pre-stall performances for a propeller. An experimental campaign was conducted using baseline and tubercled propellers in controlled environmental chambers simulating altitudes up to 9 000m. The objective is to assess the propellers’ performances with varying Reynolds numbers in hovering conditions. To complement the experimental data, a numerical model based on Blade Element Momentum Theory (BEMT) was developed and enhanced using a non-linear lifting-line correction to incorporate the influence of tubercles. The results reveal that while tubercles marginally reduce peak thrust at higher Reynolds numbers, they produce slightly higher thrust for Reynolds numbers up to 90 000. However, tubercles consistently determined an increment in the propeller’s torque. The numerical model showed limitations in capturing the three-dimensional flow effects introduced by tubercles, highlighting the need for further high-fidelity simulations.File | Dimensione | Formato | |
---|---|---|---|
Thesis.pdf
accessibile in internet per tutti
Dimensione
5.8 MB
Formato
Adobe PDF
|
5.8 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary.pdf
accessibile in internet per tutti
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240926