The development of non-degradable scaffolds represents a promising strategy for addressing critical-size bone defects and post-tumour resection sites, where natural bone regeneration is insufficient and long-term mechanical support is essential. In this context, scaffolds play a fundamental role by mimicking the native bone, providing structural support for cellular attachment, proliferation, and differentiation. An ideal scaffold must exhibit high porosity and interconnectivity, suitable mechanical properties, and biocompatibility. Thanks to their biocompatibility, durability, stability and low shrinkage rate Dental Tray and Dental Yellow Clear resins show promise in non-degradable implants. SLA was selected for scaffold fabrication due to its high resolution and design precision, enabling fine control of geometry. Several scaffold configurations were explored, including a 0/90° grid, a 0/90° grid with different offset values, and a 0/45° grid, in order to assess the influence of architecture on morphological and mechanical performance. Internal pore sizes were varied to assess printability limits, with the addition of a dye improving resolution and enabling detection of the smallest pores. Morphological characterization was conducted using a confocal microscope. Beam characterization showed high dimensional accuracy, with Dental Yellow Clear outperforming Dental Tray in terms of shape fidelity. Printed scaffolds were characterised with accurate measurements of external dimensions, pore size, wall thickness, and wall height, revealing that an intermediate offset configuration, 90_P2_O2, offered the best compromise between inter-strut spacing and shape fidelity. Mechanical testing included three-point bending tests for beam specimens, which yielded an average elastic modulus of 941.07 ± 211.61 MPa for Dental Yellow Clear and 810.71 ± 59.98 MPa for Dental Tray. Scaffold specimens underwent compression tests, showing an elastic modulus ranging from 62.25 ± 19.38 MPa to 115.37 ± 12.21 MPa for Dental Yellow Clear, values that are comparable to the lower bound of native trabecular bone stiffness (E = 100–2000 MPa). FEA using a reactive plasticity material model accurately reproduced beam behaviour with minimal error (<21.10%), though stiffness predictions for scaffold structures were generally overestimated (up to >130%), except for the 45_P2_O0 configuration, where the error was only 4.21%. These results confirm the feasibility of using SLA and dental resins to fabricate non-degradable scaffolds with high morphological fidelity and adequate mechanical strength, while also underscoring the importance of refining computational models for complex porous designs.
Lo sviluppo di scaffold non degradabili rappresenta una strategia promettente per la risoluzione di difetti ossei di dimensioni critiche e aree soggette a resezione tumorale, in cui la rigenerazione ossea risulta inadeguata e si rende necessario un supporto meccanico a lungo termine. In questo contesto, gli scaffold svolgono un ruolo fondamentale imitando la struttura dell’osso naturale e fornendo supporto strutturale per l’adesione, la proliferazione e la differenziazione cellulare. Uno scaffold ideale deve presentare elevata porosità e interconnessione, proprietà meccaniche adeguate e biocompatibilità. Grazie alla loro biocompatibilità, stabilità nel tempo e bassa percentuale di ritiro, le resine Dental Tray e Dental Yellow Clear si mostrano particolarmente promettenti per la realizzazione di scaffold non degradabili. La stereolitografia (SLA) è stata selezionata per la fabbricazione degli scaffold per la sua elevata risoluzione e precisione progettuale, permettendo così un controllo accurato della geometria. Sono state analizzate diverse configurazioni di scaffold, tra cui una griglia 0/90°, una griglia 0/90° con valori di offset differenti, e una griglia 0/45°, al fine di valutare l’influenza dell’architettura sulle prestazioni morfologiche e meccaniche. Le dimensioni dei pori interni sono state variate per determinare i limiti di stampabilità; l’aggiunta di un colorante ha migliorato la risoluzione e ha consentito l’identificazione di pori più piccoli. La caratterizzazione morfologica è stata condotta tramite microscopia confocale. La caratterizzazione delle travi ha mostrato un’elevata accuratezza dimensionale; in particolare, Dental Yellow Clear ha mostrato una maggiore fedeltà di stampa rispetto a Dental Tray. Gli scaffold stampati sono stati caratterizzati mediante misurazioni accurate delle dimensioni esterne, della dimensione dei pori, dello spessore e dell’altezza delle pareti, rivelando che la configurazione con offset intermedio, 90_P2_O2, rappresentava il miglior compromesso tra separazione strutturale e fedeltà di stampa. Le prove meccaniche di flessione a tre punti svolte su provini a trave hanno mostrato un modulo elastico di 941.07 ± 211.61 MPa per Dental Yellow Clear e 810.71 ± 59.98 MPa per Dental Tray. Gli scaffold sono stati sottoposti a prove meccaniche di compressione, mostrando un modulo elastico compreso tra 62.25 ± 19.38 MPa e 115.37 ± 12.21 MPa per Dental Yellow Clear, valori comparabili al limite inferiore della rigidità dell’osso trabecolare naturale (E = 100–2000 MPa). L’analisi agli elementi finiti, basata su un modello di plasticità reattiva, ha riprodotto accuratamente il comportamento delle travi con errori minimi (<21.10%), sebbene la rigidità sia stata generalmente sovrastimata (fino a oltre il 130%), ad eccezione della configurazione 45_P2_O0, per la quale si è registrato un errore limitato al 4.21%. Questi risultati confermano la fattibilità dell’utilizzo della tecnologia SLA e delle resine dentali per la fabbricazione di scaffold non degradabili caratterizzati da elevata fedeltà morfologica e adeguata resistenza meccanica, evidenziando al contempo l’importanza di affinare i modelli computazionali applicati a strutture porose complesse.
Assessment of printability and mechanical performance of scaffolds produced by SLA with two thermosetting resins
Frattini, Giorgia
2024/2025
Abstract
The development of non-degradable scaffolds represents a promising strategy for addressing critical-size bone defects and post-tumour resection sites, where natural bone regeneration is insufficient and long-term mechanical support is essential. In this context, scaffolds play a fundamental role by mimicking the native bone, providing structural support for cellular attachment, proliferation, and differentiation. An ideal scaffold must exhibit high porosity and interconnectivity, suitable mechanical properties, and biocompatibility. Thanks to their biocompatibility, durability, stability and low shrinkage rate Dental Tray and Dental Yellow Clear resins show promise in non-degradable implants. SLA was selected for scaffold fabrication due to its high resolution and design precision, enabling fine control of geometry. Several scaffold configurations were explored, including a 0/90° grid, a 0/90° grid with different offset values, and a 0/45° grid, in order to assess the influence of architecture on morphological and mechanical performance. Internal pore sizes were varied to assess printability limits, with the addition of a dye improving resolution and enabling detection of the smallest pores. Morphological characterization was conducted using a confocal microscope. Beam characterization showed high dimensional accuracy, with Dental Yellow Clear outperforming Dental Tray in terms of shape fidelity. Printed scaffolds were characterised with accurate measurements of external dimensions, pore size, wall thickness, and wall height, revealing that an intermediate offset configuration, 90_P2_O2, offered the best compromise between inter-strut spacing and shape fidelity. Mechanical testing included three-point bending tests for beam specimens, which yielded an average elastic modulus of 941.07 ± 211.61 MPa for Dental Yellow Clear and 810.71 ± 59.98 MPa for Dental Tray. Scaffold specimens underwent compression tests, showing an elastic modulus ranging from 62.25 ± 19.38 MPa to 115.37 ± 12.21 MPa for Dental Yellow Clear, values that are comparable to the lower bound of native trabecular bone stiffness (E = 100–2000 MPa). FEA using a reactive plasticity material model accurately reproduced beam behaviour with minimal error (<21.10%), though stiffness predictions for scaffold structures were generally overestimated (up to >130%), except for the 45_P2_O0 configuration, where the error was only 4.21%. These results confirm the feasibility of using SLA and dental resins to fabricate non-degradable scaffolds with high morphological fidelity and adequate mechanical strength, while also underscoring the importance of refining computational models for complex porous designs.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Frattini_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
997.08 kB
Formato
Adobe PDF
|
997.08 kB | Adobe PDF | Visualizza/Apri |
2025_07_Frattini_Tesi.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
4.15 MB
Formato
Adobe PDF
|
4.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240936