This thesis aims to develop and characterize lattice structures with a tunable coefficient of thermal expansion (CTE), integrated into a single multi‐material system. Starting from a review of the state of the art, the critical geometric parameters that govern the thermo‐mechanical response of the lattices and the limitations of available additive manufacturing technologies have been identified. The thermal behavior of the structure is investigated using approaches of increasing complexity: first through analytical equations for calculating the CTE in the vertical and horizontal directions of the unit cell, and then via numerical simulations—initially with beam elements and subsequently with 3D solid elements—to validate the effective use of beams and reduce the computational burden. Once the thermal behavior is thoroughly understood, the effect of the unit cell’s geometric parameters on the CTE is examined. Finally, the mechanical behavior is analyzed by determining the homogeneous elastic properties in all directions and identifying the structure’s yield point. The results demonstrate that combining different materials enables optimization of both thermal control and overall mechanical performance.

Questa tesi si propone di sviluppare e caratterizzare strutture reticolari con coefficiente di dilatazione termica (CTE) regolabile, integrate in un unico sistema multimateriale. Partendo dall’analisi dello stato dell’arte, sono stati individuati i parametri geometrici critici che condizionano la risposta termo-meccanica dei reticoli e le limitazioni delle tecnologie di stampa additiva disponibili. Il comportamento termico della struttura è studiato con approcci a complessità crescente: si parte dalle equazioni analitiche per il calcolo del CTE nelle direzioni verticale e orizzontale della cella unitaria, per poi passare a simulazioni numeriche—prima con elementi beam e successivamente con elementi 3D solidi—con l’obiettivo di validare l’efficace impiego dei beam e ridurre l’onere computazionale.Dopo aver approfondito il comportamento termico, si esamina l’influenza dei parametri geometrici della cella unitaria sul CTE. Infine, viene analizzato il comportamento meccanico, determinando le proprietà elastiche omogenee in tutte le direzioni e individuando il punto di snervamento della struttura. I risultati dimostrano che l’utilizzo combinato di materiali differenti consente di ottimizzare sia il controllo termico sia le prestazioni meccaniche complessive.

Design of multi-material lattice structure with tunable coefficient of thermal expansion

TOMA, ABDO
2024/2025

Abstract

This thesis aims to develop and characterize lattice structures with a tunable coefficient of thermal expansion (CTE), integrated into a single multi‐material system. Starting from a review of the state of the art, the critical geometric parameters that govern the thermo‐mechanical response of the lattices and the limitations of available additive manufacturing technologies have been identified. The thermal behavior of the structure is investigated using approaches of increasing complexity: first through analytical equations for calculating the CTE in the vertical and horizontal directions of the unit cell, and then via numerical simulations—initially with beam elements and subsequently with 3D solid elements—to validate the effective use of beams and reduce the computational burden. Once the thermal behavior is thoroughly understood, the effect of the unit cell’s geometric parameters on the CTE is examined. Finally, the mechanical behavior is analyzed by determining the homogeneous elastic properties in all directions and identifying the structure’s yield point. The results demonstrate that combining different materials enables optimization of both thermal control and overall mechanical performance.
BRAMBATI, GIOVANNI
LEVATI, ALESSANDRO
ING - Scuola di Ingegneria Industriale e dell'Informazione
22-lug-2025
2024/2025
Questa tesi si propone di sviluppare e caratterizzare strutture reticolari con coefficiente di dilatazione termica (CTE) regolabile, integrate in un unico sistema multimateriale. Partendo dall’analisi dello stato dell’arte, sono stati individuati i parametri geometrici critici che condizionano la risposta termo-meccanica dei reticoli e le limitazioni delle tecnologie di stampa additiva disponibili. Il comportamento termico della struttura è studiato con approcci a complessità crescente: si parte dalle equazioni analitiche per il calcolo del CTE nelle direzioni verticale e orizzontale della cella unitaria, per poi passare a simulazioni numeriche—prima con elementi beam e successivamente con elementi 3D solidi—con l’obiettivo di validare l’efficace impiego dei beam e ridurre l’onere computazionale.Dopo aver approfondito il comportamento termico, si esamina l’influenza dei parametri geometrici della cella unitaria sul CTE. Infine, viene analizzato il comportamento meccanico, determinando le proprietà elastiche omogenee in tutte le direzioni e individuando il punto di snervamento della struttura. I risultati dimostrano che l’utilizzo combinato di materiali differenti consente di ottimizzare sia il controllo termico sia le prestazioni meccaniche complessive.
File allegati
File Dimensione Formato  
2025_07_Toma_Executive_Summary_02.pdf

accessibile in internet solo dagli utenti autorizzati

Descrizione: Executive Summary
Dimensione 7.4 MB
Formato Adobe PDF
7.4 MB Adobe PDF   Visualizza/Apri
2025_07_Toma_TESI_01.pdf

accessibile in internet solo dagli utenti autorizzati

Descrizione: Tesi
Dimensione 53.29 MB
Formato Adobe PDF
53.29 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/240981