As of today, magnetic confinement fusion is the most promising and investigated approach to employ thermonuclear fusion for large-scale energy production. In this context a key aspect is represented by the characterization of the radiating structure of the plasma, to both improve plasma stability and optimize the power deposition. This thesis work fo cuses on the calibration and validation of the Infrared Video Bolometer (IRVB) diagnostic at Wendelstein 7-X. The IRVB is an imaging system for total radiated power that uses a thin metallic foil as absorbing element. One side of the absorber is exposed to plasma radiation, while a high resolution IR camera monitors its temperature evolution. Incident power distribution is then inferred from the temperature one through a 2D time and space discrete heat-transfer equation. To retrieve quantitatively accurate measurements of the power impinging on the detector, a fundamental aspect is the calibration of the thermal and optical properties of the 5µm thick gold foil here employed as absorber. Calibration is performed by shining under vacuum a laser of known characteristics onto one side the foil, and by measuring its thermal response. To validate the calibration method and to in vestigate the main sources of error that affect it, simulations of the heat-transfer problem and calibration procedure have been extensively used. This allowed to confirm that the method is indeed accurate within 3% when subject to a realistic 70mK thermal noise, and that its lower limit on the achievable spatial resolution of the foil parameters is fixed by time resolution. Experimental data confirms the predicted features, and calibration of the parameters is performed across the whole foil. To further validate the results, data from IRVB during different W7-X experiments is then analyzed. In particular, focus is placed on the small plasma scenario, where the more uniform radiation structure across the plasma volume allows to compare the measurements of IRVB with those from the well-established core-bolometry system. Good accordance is found, further confirming the improved calibration quality.
Ad oggi, la fusione a confinamento magnetico rappresenta l’approccio più promettente per l’impiego della fusione termonucleare nella produzione di energia. In questo contesto, un aspetto chiave è rappresentato dalla caratterizzazione dell’emissione del plasma, sia per migliorarne la stabilità, sia per ottimizzare il carico termico delle componenti. Questo lavoro di tesi si concentra sulla calibrazione e validazione dell’Infrared Video Bolometer (IRVB) presso Wendelstein 7-X (W7-X). IRVB è un sistema di imaging della potenza irradiata che utilizza una sottile lamina metallica come elemento assorbente. Un lato della lamina è esposto alla radiazione del plasma, mentre una camera IR ne monitora l’evoluzione della temperatura. La distribuzione di potenza incidente viene poi dedotta da quella della temperatura tramite un equazione 2D del trasporto termico. Per ottenere misure quantitativamente accurate della potenza incidente sul sensore, è fondamentale calibrare le proprietà termiche e ottiche della lamina d’oro spessa 5µm qui utilizzata come assorbitore. La calibrazione viene effettuata illuminando in vuoto un lato della lam ina con un laser di caratteristiche note e misurandone la risposta termica. Per validare il metodo di calibrazione e indagarne le principali fonti di errore, sono poi impiegate es tensivamente simulazioni dell’equazione del trasporto. Questo ha permesso di confermare che il metodo è accurato entro un margine del 3% in presenza di un rumore termico di 70mK, e che il limite inferiore alla risoluzione spaziale dei parametri è imposto dalla risoluzione temporale. I dati sperimentali confermano il comportamento previsto, e la calibrazione dei parametri è dunque condotta sull’intera superficie. Per validare ulterior mente i risultati, sono poi analizzati dati acquisiti con IRVB durante diversi esperimenti a W7-X. In particolare, attenzione è posta sullo scenario di "small plasma", in cui la maggiore uniformità della struttura radiata consente il confronto tra le misure di IRVB e quelle del gia consolidato sistema di core-bolometry. Una buona coerenza è osservata, confermando ulteriormente la qualità della calibrazione ottenuta.
Calibration and validation of an imaging bolometer diagnostic at the Wendelstein 7-X stellarator
Siever, Kevin Andrea
2024/2025
Abstract
As of today, magnetic confinement fusion is the most promising and investigated approach to employ thermonuclear fusion for large-scale energy production. In this context a key aspect is represented by the characterization of the radiating structure of the plasma, to both improve plasma stability and optimize the power deposition. This thesis work fo cuses on the calibration and validation of the Infrared Video Bolometer (IRVB) diagnostic at Wendelstein 7-X. The IRVB is an imaging system for total radiated power that uses a thin metallic foil as absorbing element. One side of the absorber is exposed to plasma radiation, while a high resolution IR camera monitors its temperature evolution. Incident power distribution is then inferred from the temperature one through a 2D time and space discrete heat-transfer equation. To retrieve quantitatively accurate measurements of the power impinging on the detector, a fundamental aspect is the calibration of the thermal and optical properties of the 5µm thick gold foil here employed as absorber. Calibration is performed by shining under vacuum a laser of known characteristics onto one side the foil, and by measuring its thermal response. To validate the calibration method and to in vestigate the main sources of error that affect it, simulations of the heat-transfer problem and calibration procedure have been extensively used. This allowed to confirm that the method is indeed accurate within 3% when subject to a realistic 70mK thermal noise, and that its lower limit on the achievable spatial resolution of the foil parameters is fixed by time resolution. Experimental data confirms the predicted features, and calibration of the parameters is performed across the whole foil. To further validate the results, data from IRVB during different W7-X experiments is then analyzed. In particular, focus is placed on the small plasma scenario, where the more uniform radiation structure across the plasma volume allows to compare the measurements of IRVB with those from the well-established core-bolometry system. Good accordance is found, further confirming the improved calibration quality.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Siever_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
60.47 MB
Formato
Adobe PDF
|
60.47 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Siever_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: executive summary
Dimensione
3.7 MB
Formato
Adobe PDF
|
3.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240992