Battery Energy Storage Systems (BESS) are increasingly recognized as a strategic asset in supporting the decarbonization and modernization of national power systems. Their ability to provide flexibility, integrate variable renewable energy sources (V-RES), and deliver ancillary services makes them particularly valuable in future electricity markets. This thesis develops a detailed techno-econimic zonal model of the Italian electricity system for 2030, performing an hourly system cost minimization, using PLEXOS, a commercial energy market simulation platform. The model adopts a simplified copper-plate structure across seven bidding zones, integrating hourly electricity demand, interzonal Net Transfer Capacities (NTCs), thermal generation data with fuel chains, generator efficiency, and emission costs through the EU Emissions Trading Scheme (ETS). Three scenarios are analyzed, each with equal V-RES capacity but different levels of BESS deployment: Base, Slow, and Policy. Results show that higher BESS penetration leads to moderately higher average electricity prices for consumers. However, system-wide benefits emerge: total system costs decrease, CO2 emissions are significantly reduced, and up to 30% of the Frequency Containment Reserve (FCR) is provided by batteries. Additionally, BESS reduce curtailment, smooth hourly price profiles, and alleviate interzonal congestion—albeit increasing average interface loading due to reshaped power flows. These findings highlight the economic and operational value of BESS, while also pointing to the importance of co-planning storage and network upgrades.
I sistemi di accumulo a batteria (BESS) rappresentano una risorsa strategica per la decarbonizzazione e l’ammodernamento dei sistemi elettrici nazionali. La loro capacità di fornire flessibilità, integrare fonti rinnovabili non programmabili (V-RES) e offrire servizi ancillari li rende particolarmente rilevanti nei mercati elettrici del futuro. Questa tesi sviluppa un modello tecno-economico zonale dettagliato del sistema elettrico italiano al 2030, simulando una minimizzazione di costo di sitema orario, implementato su PLEXOS, una piattaforma di simulazione per infrastutture di mercati energetici. Il modello adotta una struttura semplificata “copper-plate” su sette zone di mercato, includendo domanda oraria, capacità di scambio interzonale (NTC), dati di generazione termica con filiere dei combustibili, efficienza e costi delle emissioni secondo l’EU ETS. Sono analizzati tre scenari a pari capacità rinnovabile, ma con diversi livelli di penetrazione BESS: Base, Slow e Policy. I risultati mostrano un moderato aumento del prezzo medio dell’energia, ma evidenziano benefici complessivi: il costo totale di sistema si riduce, le emissioni calano sensibilmente e fino al 30% della riserva primaria (FCR) è coperta da batterie. Le batterie riducono anche i fenomeni di curtailment, appiattiscono i profili orari dei prezzi e alleviano la congestione tra zone, pur aumentando il caricamento medio delle interfacce a causa della redistribuzione dei flussi. Il lavoro conferma il valore strategico dei BESS per l’equilibrio economico e operativo del sistema elettrico futuro.
Energy infrastructures modeling for supporting energy transition
Rizzo, Giovanni
2024/2025
Abstract
Battery Energy Storage Systems (BESS) are increasingly recognized as a strategic asset in supporting the decarbonization and modernization of national power systems. Their ability to provide flexibility, integrate variable renewable energy sources (V-RES), and deliver ancillary services makes them particularly valuable in future electricity markets. This thesis develops a detailed techno-econimic zonal model of the Italian electricity system for 2030, performing an hourly system cost minimization, using PLEXOS, a commercial energy market simulation platform. The model adopts a simplified copper-plate structure across seven bidding zones, integrating hourly electricity demand, interzonal Net Transfer Capacities (NTCs), thermal generation data with fuel chains, generator efficiency, and emission costs through the EU Emissions Trading Scheme (ETS). Three scenarios are analyzed, each with equal V-RES capacity but different levels of BESS deployment: Base, Slow, and Policy. Results show that higher BESS penetration leads to moderately higher average electricity prices for consumers. However, system-wide benefits emerge: total system costs decrease, CO2 emissions are significantly reduced, and up to 30% of the Frequency Containment Reserve (FCR) is provided by batteries. Additionally, BESS reduce curtailment, smooth hourly price profiles, and alleviate interzonal congestion—albeit increasing average interface loading due to reshaped power flows. These findings highlight the economic and operational value of BESS, while also pointing to the importance of co-planning storage and network upgrades.| File | Dimensione | Formato | |
|---|---|---|---|
|
Thesis_Giovanni_Rizzo.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Teshis
Dimensione
3.15 MB
Formato
Adobe PDF
|
3.15 MB | Adobe PDF | Visualizza/Apri |
|
Executive_Summary_Giovanni_Rizzo.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
583.31 kB
Formato
Adobe PDF
|
583.31 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/241019