Transportation sector represents a substantial fraction of global anthropogenic emissions and air pollution. Among the pollutants released by diesel and gasoline veichels, (NOx) emitted by internal combustion engines are particularly detrimental to human health, hav ing a strong correlation with respiratory diseases, lung cancer, as well as to environment, causing the formation of tropospheric ozone and photochemical smog. In response to these adverse effects, increasingly stringent environmental regulations have been implemented, aiming to reduce NOx emissions to near-zero levels. Current technologies for NOx abatement include Three-Way Catalysts, Selective Catalytic Reduction and Lean NOx Traps. However, the effectiveness of these systems is limited by their requirement for elevated operating temperatures, typically above 180-200◦C. Consequently, during the cold-start phase, when the engine has not yet reached optimal temperatures, significant NOx emissions are significantly higher. To overcome this issue, Passive NOx Adsorbers (PNAs) have been proposed as an al ternative solution. PNAs are designed to adsorb NOx at low temperatures and release it at higher temperatures, enabling its subsequent conversion in downstream catalytic converters. Among the materials investigated, zeolite-supported palladium has shown particularly promising performance. This study focuses on the evaluation of two palladium-loaded zeolites catalyst, Pd/SAPO 34 and a Pd/LTA, both synthesized by wet impregnation, for their potential in PNA application. Several analysys were carried out in order to chatacterize the catalysts, in cluding XRD, BET, ICP and Raman. Subsequently, a series of adsorption tests were conducted in the presence of O2, CO, H2O, and hydrocarbons (HC), at different temper atures, in order to simulate the presence of the main exhaust components in the gas feed. Other tests such as wet and dry oxidation of CO and HC were carried out in order to study the oxidizing property of the two catalysts. Finally, a SCR test was performed in order to investigate the effectiveness of Pd/SAPO-34 in converting NH3 into harmless N2. The results provide insights into the interaction mechanisms and storage capacity of the catalyst under conditions representative of real exhaust gas compositions.
Il settore dei trasporti rappresenta una frazione significativa delle emissioni antropogeniche globali e dell’inquinamento atmosferico. Tra gli inquinanti rilasciati dai veicoli diesel e a benzina, gli ossidi di azoto (NOx), emessi dai motori a combustione interna, risultano particolarmente dannosi per la salute umana, poiché fortemente correlati a malattie res piratorie, tumori polmonari, e per l’ambiente, in quanto contribuiscono alla formazione di ozono troposferico e smog fotochimico. In risposta a questi effetti negativi, sono state in trodotte normative ambientali sempre più stringenti, con l’obiettivo di ridurre le emissioni di NOx a livelli prossimi allo zero. Le attuali tecnologie di abbattimento degli NOx comprendono i catalizzatori a tre vie (TWC), la riduzione catalitica selettiva (SCR) e i trappole per NOx in condizioni magre (LNT). Tuttavia, l’efficacia di questi sistemi è limitata dalla necessità di elevate temper ature operative, tipicamente superiori ai 180–200°C. Di conseguenza, durante la fase di avviamento a freddo, quando il motore non ha ancora raggiunto la temperatura di regime, le emissioni di NOx risultano significativamente più elevate. Per ovviare a questo problema, sono stati proposti gli adsorbitori passivi di NOx (PNA) come soluzione alternativa. I PNA sono progettati per immagazzinare gli NOx a basse temperature e rilasciarli a temperature più elevate, consentendone la successiva conver sione nei convertitori catalitici a valle. Tra i materiali studiati, il palladio supportato su zeoliti ha mostrato prestazioni particolarmente promettenti. Questo lavoro si concentra sulla valutazione di due catalizzatori a base di zeoliti cari cati con palladio, Pd/SAPO-34 e Pd/LTA, entrambi sintetizzati mediante impregnazione umida, per la loro potenziale applicazione come PNA. Sono state condotte diverse analisi di caratterizzazione, tra cui XRD, BET, ICP e Raman. Successivamente, è stata eseguita una serie di test di adsorbimento in presenza di O2, CO, H2O e idrocarburi (HC), a di verse temperature, al fine di simulare la composizione tipica dei gas di scarico. Inoltre, sono stati condotti test di ossidazione di CO e HC, in condizioni sia secche che umide, per studiare la capacità ossidativa dei due catalizzatori. Infine, è stato eseguito un test SCR per valutare l’efficacia del Pd/SAPO-34 nella conversione dell’NH3 in N2 innocuo. I risultati ottenuti forniscono indicazioni approfondite sui meccanismi di interazione e sulla capacità di accumulo degli NOx da parte dei catalizzatori, in condizioni rappresentative dei gas di scarico reali.
Passive NOx adsorbers: study of the catalytic activity of Pd/SAPO-34 and Pd/LTA for NOx removal
PREDAN, ANDREA
2024/2025
Abstract
Transportation sector represents a substantial fraction of global anthropogenic emissions and air pollution. Among the pollutants released by diesel and gasoline veichels, (NOx) emitted by internal combustion engines are particularly detrimental to human health, hav ing a strong correlation with respiratory diseases, lung cancer, as well as to environment, causing the formation of tropospheric ozone and photochemical smog. In response to these adverse effects, increasingly stringent environmental regulations have been implemented, aiming to reduce NOx emissions to near-zero levels. Current technologies for NOx abatement include Three-Way Catalysts, Selective Catalytic Reduction and Lean NOx Traps. However, the effectiveness of these systems is limited by their requirement for elevated operating temperatures, typically above 180-200◦C. Consequently, during the cold-start phase, when the engine has not yet reached optimal temperatures, significant NOx emissions are significantly higher. To overcome this issue, Passive NOx Adsorbers (PNAs) have been proposed as an al ternative solution. PNAs are designed to adsorb NOx at low temperatures and release it at higher temperatures, enabling its subsequent conversion in downstream catalytic converters. Among the materials investigated, zeolite-supported palladium has shown particularly promising performance. This study focuses on the evaluation of two palladium-loaded zeolites catalyst, Pd/SAPO 34 and a Pd/LTA, both synthesized by wet impregnation, for their potential in PNA application. Several analysys were carried out in order to chatacterize the catalysts, in cluding XRD, BET, ICP and Raman. Subsequently, a series of adsorption tests were conducted in the presence of O2, CO, H2O, and hydrocarbons (HC), at different temper atures, in order to simulate the presence of the main exhaust components in the gas feed. Other tests such as wet and dry oxidation of CO and HC were carried out in order to study the oxidizing property of the two catalysts. Finally, a SCR test was performed in order to investigate the effectiveness of Pd/SAPO-34 in converting NH3 into harmless N2. The results provide insights into the interaction mechanisms and storage capacity of the catalyst under conditions representative of real exhaust gas compositions.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi Andrea Predan.pdf
accessibile in internet per tutti
Dimensione
46.91 MB
Formato
Adobe PDF
|
46.91 MB | Adobe PDF | Visualizza/Apri |
|
Executive summary Andrea Predan.pdf
accessibile in internet per tutti
Dimensione
29.95 MB
Formato
Adobe PDF
|
29.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/241097