In this work, the potential of hydrogen propulsion in aviation is analyzed both from an aircraft design and airline operations perspectives, to support developing a road map from preliminary design to entry into service of such innovative aircraft, highlighting hurdles and benefits. A dedicated preliminary sizing methodology has been developed and validated. This can size a hydrogen-burning jet aircraft based on its mission requirements and including the peculiarities linked to the switch to hydrogen. Notably, the cryogenic tank in the fuselage impacts the wetted surface and required thrust, while the lack of fuel bending alleviation modifies the practical definition of MZFW. Studies cover both short-medium and long-range aircraft, showing a decreased MTOM and an increased energy consumption. For hydrogen jet aircraft, a strong coupling between aircraft mass and design range arises because of the bulky cryogenic tank, unlike jet fuel aircraft, where wings are sized by low-speed performance. Therefore, a design range analysis is performed, showing that its reduction improves the energy efficiency, while still allowing a good coverage of European airline networks. For the operation analysis, the preliminary sizing of an in-situ airport hydrogen production infrastructure, based on an electrolyzer, liquefier, ground storage tank and refueling units, is performed to assess the hydrogen price for airlines and the impact on the airport environment. These methodologies enable assessing the fleet transition from jet fuel to hydrogen, considering both the aircraft performance and the impact on airports. An optimizer attributes each city pair to either a traditional or innovative aircraft, accounting for hydrogen availability at airports, with the possibility of tankering to serve destinations without it. The optimization targets indicators such as overall network energy intensity, energy cost or CO2 intensity. The final objective is to obtain the optimal fleet transient, which maximizes the potential benefits offered by hydrogen aircraft.
In questo lavoro si analizza il potenziale della propulsione a idrogeno per l'aviazione commerciale, sia dal punto di vista della progettazione preliminare che delle operazioni di compagnia aerea, per sviluppare una road map che conduca dallo sviluppo iniziale all’entrata in servizio di tali aeromobili innovativi, evidenziandone sfide e benefici. La tesi presenta lo sviluppo e la validazione di una metodologia di dimensionamento preliminare di aeromobili a reazione alimentati a idrogeno sulla base dei requisiti di missione, includendo le peculiarità legate all'integrazione di questo carburante innovativo a bordo. In particolare, il serbatoio criogenico nella fusoliera causa un aumento della superficie bagnata e quindi della spinta richiesta, mentre l’assenza di carburante nelle ali, che modificano gli sforzi flettenti alla radice dell'ala, cambia la definizione pratica del MZFW. Gli studi coprono sia aeromobili a corto-medio raggio che a lungo raggio e mostrano una diminuzione della MTOM e un incremento del consumo energetico. A causa dell’ingombro del serbatoio criogenico, emerge un forte accoppiamento tra la massa dell’aeromobile e il raggio di progetto, mostrando così una specificità degli aerei a idrogeno. Pertanto, è stato condotto uno studio del raggio di progetto, la cui riduzione migliora l’efficienza energetica, pur mantenenendo una buona copertura di network europei. Per quanto riguarda l’analisi operazionale, è stato effettuato il dimensionamento preliminare di un’infrastruttura aeroportuale per la produzione in situ di idrogeno, che include un elettrolizzatore, un liquefattore, un serbatoio criogenico di stoccaggio a terra e unità di rifornimento, al fine di valutare il prezzo dell’idrogeno per gli operatori. Con questi risultati, si può valutare il transitorio della flotta, con un ottimizzatore che assegna ogni rotta a un aeromobile tradizionale o innovativo, tenendo conto della disponibilità di idrogeno negli aeroporti, introducendo il tankering per destinazioni prive di infrastrutture. L’ottimizzazione mira a indicatori come l’intensità energetica complessiva della rete, il costo energetico o l’intensità di CO2. L’obiettivo finale è ottenere il miglior transitorio della flotta, massimizzando i benefici potenziali offerti dagli aeromobili a idrogeno.
Hydrogen-powered aviation: aircraft design and future operational scenarios
Sirtori, Gabriele
2024/2025
Abstract
In this work, the potential of hydrogen propulsion in aviation is analyzed both from an aircraft design and airline operations perspectives, to support developing a road map from preliminary design to entry into service of such innovative aircraft, highlighting hurdles and benefits. A dedicated preliminary sizing methodology has been developed and validated. This can size a hydrogen-burning jet aircraft based on its mission requirements and including the peculiarities linked to the switch to hydrogen. Notably, the cryogenic tank in the fuselage impacts the wetted surface and required thrust, while the lack of fuel bending alleviation modifies the practical definition of MZFW. Studies cover both short-medium and long-range aircraft, showing a decreased MTOM and an increased energy consumption. For hydrogen jet aircraft, a strong coupling between aircraft mass and design range arises because of the bulky cryogenic tank, unlike jet fuel aircraft, where wings are sized by low-speed performance. Therefore, a design range analysis is performed, showing that its reduction improves the energy efficiency, while still allowing a good coverage of European airline networks. For the operation analysis, the preliminary sizing of an in-situ airport hydrogen production infrastructure, based on an electrolyzer, liquefier, ground storage tank and refueling units, is performed to assess the hydrogen price for airlines and the impact on the airport environment. These methodologies enable assessing the fleet transition from jet fuel to hydrogen, considering both the aircraft performance and the impact on airports. An optimizer attributes each city pair to either a traditional or innovative aircraft, accounting for hydrogen availability at airports, with the possibility of tankering to serve destinations without it. The optimization targets indicators such as overall network energy intensity, energy cost or CO2 intensity. The final objective is to obtain the optimal fleet transient, which maximizes the potential benefits offered by hydrogen aircraft.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Sirtori.pdf
accessibile in internet per tutti
Descrizione: PhD Thesis
Dimensione
14.13 MB
Formato
Adobe PDF
|
14.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/241159