The exploration of minor celestial bodies, such as asteroids and comets, has attracted significant attention due to three primary motivations: scientific investigation, resource utilization, and planetary defense. These bodies provide unique insights into the formation and evolution of the Solar System, possess valuable resources that could be exploited for in-situ utilization during deep space missions, and pose potential threats to Earth. However, minor bodies observations from ground are inherently limited in their ability to characterize the complex environment of these objects, which present irregular shapes, heterogeneous mass distributions, and non-uniform spin states. Additionally, environmental perturbations, particularly solar radiation pressure, further complicate the dynamics around these objects. Consequently, spacecraft operating in proximity to minor bodies require a high degree of robustness and autonomy to ensure safe and effective mission performance. Simultaneously, the use of miniaturized platforms such as CubeSats is rapidly expanding, revolutionizing space exploration through their compact size, standardized design, and reduced development, qualification, and launch costs. These attributes make CubeSats particularly suited for cost-effective and higher-risk missions that may not be feasible with larger, traditional spacecraft. This research aims to evaluate the robustness of conventional guidance, navigation, and control techniques for close proximity operations around minor bodies. The investigation considers a diverse range of minor body shapes, sizes, and masses, as well as various spacecraft platforms and hardware configurations. A particular focus is placed on assessing the feasibility in flying such missions with CubeSats since they offer a promising way to enhance mission flexibility and cost-effectiveness. Furthermore, the study explores the necessity of autonomous operations near minor bodies, identifying specific conditions where autonomy becomes indispensable.
L’esplorazione dei corpi celesti minori, come asteroidi e comete, ha suscitato un notevole interesse per tre principali motivazioni: indagine scientifica, utilizzo delle risorse e difesa planetaria. Questi corpi forniscono informazioni uniche sulla formazione e l’evoluzione del Sistema Solare, possiedono risorse preziose che potrebbero essere sfruttate per l’utilizzo in-situ durante missioni nello spazio profondo e rappresentano potenziali minacce per la Terra. Tuttavia, le osservazioni dei corpi minori da terra sono intrinsecamente limitate nella capacità di caratterizzare l’ambiente complesso di questi oggetti, che presentano forme irregolari, distribuzioni di massa eterogenee e stati di rotazione non uniformi. Inoltre, le perturbazioni ambientali, in particolare la pressione della radiazione solare, complicano ulteriormente le dinamiche intorno a questi oggetti. Di conseguenza, le missioni operanti in prossimità dei corpi minori richiedono un elevato grado di robustezza e autonomia per garantire prestazioni sicure ed efficaci. Contemporaneamente, l’utilizzo di piattaforme miniaturizzate come i CubeSat si sta espandendo rapidamente, rivoluzionando l’esplorazione spaziale grazie alle loro dimensioni compatte, al design standardizzato e ai costi ridotti di sviluppo, qualificazione e lancio. Queste caratteristiche rendono i CubeSat particolarmente adatti a missioni a basso costo e ad alto rischio, che potrebbero non essere fattibili con satelliti tradizionali e di dimensioni maggiori. Questa ricerca si propone di valutare la robustezza delle tecniche convenzionali di guida, navigazione e controllo per operazioni in prossimità dei corpi minori. L’indagine considera una gamma di forme, dimensioni e masse dei corpi minori, nonché diverse piattaforme spaziali e configurazioni hardware. Un’attenzione particolare è rivolta alla valutazione della fattibilità di tali missioni con CubeSat, che offrono un’opportunità promettente per migliorarne la flessibilità e l’efficacia. Inoltre, lo studio esplora la necessità di operazioni autonome in prossimità dei corpi minori, identificando condizioni specifiche in cui l’autonomia diventa indispensabile.
Robust and autonomous guidance, navigation, and control in highly perturbed environments
BUONAGURA, CARMINE
2024/2025
Abstract
The exploration of minor celestial bodies, such as asteroids and comets, has attracted significant attention due to three primary motivations: scientific investigation, resource utilization, and planetary defense. These bodies provide unique insights into the formation and evolution of the Solar System, possess valuable resources that could be exploited for in-situ utilization during deep space missions, and pose potential threats to Earth. However, minor bodies observations from ground are inherently limited in their ability to characterize the complex environment of these objects, which present irregular shapes, heterogeneous mass distributions, and non-uniform spin states. Additionally, environmental perturbations, particularly solar radiation pressure, further complicate the dynamics around these objects. Consequently, spacecraft operating in proximity to minor bodies require a high degree of robustness and autonomy to ensure safe and effective mission performance. Simultaneously, the use of miniaturized platforms such as CubeSats is rapidly expanding, revolutionizing space exploration through their compact size, standardized design, and reduced development, qualification, and launch costs. These attributes make CubeSats particularly suited for cost-effective and higher-risk missions that may not be feasible with larger, traditional spacecraft. This research aims to evaluate the robustness of conventional guidance, navigation, and control techniques for close proximity operations around minor bodies. The investigation considers a diverse range of minor body shapes, sizes, and masses, as well as various spacecraft platforms and hardware configurations. A particular focus is placed on assessing the feasibility in flying such missions with CubeSats since they offer a promising way to enhance mission flexibility and cost-effectiveness. Furthermore, the study explores the necessity of autonomous operations near minor bodies, identifying specific conditions where autonomy becomes indispensable.| File | Dimensione | Formato | |
|---|---|---|---|
|
[Buonagura]+PhD+Thesis.pdf
accessibile in internet per tutti
Descrizione: PhD Thesis Carmine Buonagura
Dimensione
59.22 MB
Formato
Adobe PDF
|
59.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/241520