Concrete construction technology is undergoing rapid changes in the past decade over the advent of additive manufacturing with concrete. Given the well documented advantages of the additive manufacturing technology such as fast and precise free-form construction, the potential of the Concrete 3D Printing technology is immense. To achieve the full potential of this novel technology, it is essential to upscale the applicability of the technology from architectural prototypes to engineering scale. The development of applicable design guidelines such as those prescribed in the Eurocode is essential for this upscaling of the novel technology. To enable this development, this study focusses on the study of mechanical properties of these novel fast-setting printable cementitious mortars both in their fresh states and hardened states. This thesis develops and adapts existing testing methodologies such as ramp-up and ramp-down tests using a vane shear rheometer and direct tensile tests and direct shear tests on fresh printable cementitious mortars. These methodologies are easy to deploy on field to assess otherwise nebulously defined printability parameters such as extrudability, pumpability and buildability in terms of known rheological and material parameters such as plastic viscosity, dynamic yield strength, static tensile and shear strengths at very early ages. This is crucial to define the printability window of the cementitious mortars and in turn concretes to enable large scale construction using the 3D printing technology. The layer-wise mode of construction quintessential to the printing of concrete leaves interfaces which have different properties to that of the layer. These interfaces interact and interfere with crack propagation and contribute to differential properties of structural elements in different directions giving rise to a uniquely anisotropic mechanism of load transfer in printed structures compared to monolithically cast conventional concrete structures. This phenomenon is identified by performing 3-point bending tests on printed elements with different layer orientations and comparing the fracture energy in Mode I (Gf) and peak flexural stresses (𝜎𝑓) of the printed concrete tested. This study was undertaken with the goal of understanding and characterising the size-effect behaviour necessary for the design of printed structures. It has been noted that the printed elements adhere to a linear elastic fracture criterion which is in between the statistical Weibull’s size effect law and the energetic Bažant’s size effect law. ABAQUS model of 3-point bending tests are developed with different material properties of the interface elements and the layers which are validated against the vi experimental results. Upon parametrisation of the fracture energy and peak flexural stress values, it has been noted that the properties of the interface elements are categorised by the tests done with the loading direction parallel to the layer orientation. This has also been corroborated by Mode II fracture tests following Reinhardt and Xu (2000) adopted to printed elements which were originally proposed for conventional concrete. The study of the durability of printed specimens in comparison with cast specimens is essential for the understanding of the overall performance of printed elements. It is understood that due to the presence of interfaces which act as imperfections, the printed elements are more prone to the ingress of aggressive ions such as Chloride. Sections of this study have been dedicated to study the effect of the presence of interfaces on the ingress of chlorides by analysing specimens with different layer orientations and different locations. A 2D approach to accurately establish the depth of penetration and therefore the diffusion coefficient in otherwise irregular surfaces unique to printed structures has been proposed. Overall, the testing and analytical methodologies developed in this thesis have proven to be suitable for applications on-field and useful for the adaption of current design standards and principles to printable cementitious mortars both in the fresh and hardened states. Further studies on the structural design of printed concrete structures inspired from this work will add great value to the large-scale applicability of the Concrete 3D Printing technology.
La tecnologia delle costruzioni in calcestruzzo ha subito rapidi cambiamenti nell'ultimo decennio grazie all'avvento della produzione additiva. Dati i vantaggi ampiamente documentati della tecnologia di produzione additiva, come la costruzione di forme libere rapida e precisa, il potenziale della stampa 3D del calcestruzzo è immenso. Per sfruttare appieno il potenziale di questa nuova tecnologia, è essenziale estenderne l'applicabilità dai prototipi architettonici alla scala ingegneristica. Lo sviluppo di linee guida progettuali applicabili, come quelle prescritte dall'Eurocodice, è essenziale per questo ampliamento di scala della nuova tecnologia. Per consentire questo sviluppo, questo studio si concentra sullo studio delle proprietà meccaniche di queste nuove malte cementizie stampabili a presa rapida, sia allo stato fresco che indurito. Questa tesi sviluppa e adatta metodologie di prova esistenti, come prove di ramp-up e ramp-down utilizzando un reometro a taglio a palette e prove di trazione diretta e prove di taglio diretto su malte cementizie stampabili fresche. Queste metodologie sono facili da implementare sul campo per valutare parametri di stampabilità altrimenti poco definiti, come estrudibilità, pompabilità e costruibilità, in termini di parametri reologici e dei materiali noti come viscosità plastica, limite di snervamento dinamico, resistenza statica a trazione e taglio a stagionatura molto precoce. Ciò è fondamentale per definire la finestra di stampabilità delle malte cementizie e, di conseguenza, dei calcestruzzi, al fine di consentire la costruzione su larga scala utilizzando la tecnologia di stampa 3D. La modalità di costruzione a strati, fondamentale per la stampa del calcestruzzo, lascia interfacce con proprietà diverse da quelle dello strato. Queste interfacce interagiscono e interferiscono con la propagazione delle crepe e contribuiscono a differenziare le proprietà degli elementi strutturali in diverse direzioni, dando origine a un meccanismo di trasferimento del carico unicamente anisotropo nelle strutture stampate rispetto alle strutture in calcestruzzo convenzionale gettate monoliticamente. Questo fenomeno viene identificato eseguendo test di flessione a 3 punti su elementi stampati con diversi orientamenti degli strati e confrontando l'energia di frattura in Modo I (Gf) e le sollecitazioni flessionali di picco (𝜎𝑓) del calcestruzzo stampato testato. Questo studio è stato condotto con l'obiettivo di comprendere e caratterizzare il comportamento dimensionale necessario per la progettazione di strutture stampate. È stato osservato che gli elementi stampati aderiscono a un criterio di frattura elastico lineare, che si colloca tra la legge statistica di Weibull relativa all'effetto dimensionale e la legge energetica di Bažant relativa all'effetto dimensionale. Il modello ABAQUS per prove di flessione a 3 punti è stato sviluppato con diverse proprietà dei materiali degli elementi di interfaccia e degli strati, validate rispetto ai risultati sperimentali. Dopo la parametrizzazione dei valori di energia di frattura e di picco della sollecitazione flessionale, si è osservato che le proprietà degli elementi di interfaccia sono classificate in base alle prove effettuate con la direzione del carico parallela all'orientamento degli strati. Ciò è stato corroborato anche dalle prove di frattura di Modo II, secondo Reinhardt e Xu (2000), applicate agli elementi stampati, originariamente proposte per il calcestruzzo convenzionale. Lo studio della durabilità dei provini stampati rispetto ai provini fusi è essenziale per la comprensione delle prestazioni complessive degli elementi stampati. È noto che, a causa della presenza di interfacce che agiscono come imperfezioni, gli elementi stampati sono più inclini all'ingresso di ioni aggressivi come il cloruro. Alcune sezioni di questo studio sono state dedicate allo studio dell'effetto della presenza di interfacce sull'ingresso di cloruri, analizzando campioni con diversi orientamenti degli strati e diverse posizioni. È stato proposto un approccio 2D per stabilire con precisione la profondità di penetrazione e, di conseguenza, il coefficiente di diffusione in superfici altrimenti irregolari, tipiche delle strutture stampate. Nel complesso, le metodologie di test e analisi sviluppate in questa tesi si sono dimostrate adatte alle applicazioni sul campo e utili per l'adattamento degli attuali standard e principi di progettazione alle malte cementizie stampabili, sia allo stato fresco che indurito. Ulteriori studi sulla progettazione strutturale di strutture in calcestruzzo stampato, ispirati da questo lavoro, aggiungeranno un grande valore all'applicabilità su larga scala della tecnologia di stampa 3D per calcestruzzo.
Mechanical characterisation of 3d printable cementitious mortars
Kompella, Kasyapa Sriram
2024/2025
Abstract
Concrete construction technology is undergoing rapid changes in the past decade over the advent of additive manufacturing with concrete. Given the well documented advantages of the additive manufacturing technology such as fast and precise free-form construction, the potential of the Concrete 3D Printing technology is immense. To achieve the full potential of this novel technology, it is essential to upscale the applicability of the technology from architectural prototypes to engineering scale. The development of applicable design guidelines such as those prescribed in the Eurocode is essential for this upscaling of the novel technology. To enable this development, this study focusses on the study of mechanical properties of these novel fast-setting printable cementitious mortars both in their fresh states and hardened states. This thesis develops and adapts existing testing methodologies such as ramp-up and ramp-down tests using a vane shear rheometer and direct tensile tests and direct shear tests on fresh printable cementitious mortars. These methodologies are easy to deploy on field to assess otherwise nebulously defined printability parameters such as extrudability, pumpability and buildability in terms of known rheological and material parameters such as plastic viscosity, dynamic yield strength, static tensile and shear strengths at very early ages. This is crucial to define the printability window of the cementitious mortars and in turn concretes to enable large scale construction using the 3D printing technology. The layer-wise mode of construction quintessential to the printing of concrete leaves interfaces which have different properties to that of the layer. These interfaces interact and interfere with crack propagation and contribute to differential properties of structural elements in different directions giving rise to a uniquely anisotropic mechanism of load transfer in printed structures compared to monolithically cast conventional concrete structures. This phenomenon is identified by performing 3-point bending tests on printed elements with different layer orientations and comparing the fracture energy in Mode I (Gf) and peak flexural stresses (𝜎𝑓) of the printed concrete tested. This study was undertaken with the goal of understanding and characterising the size-effect behaviour necessary for the design of printed structures. It has been noted that the printed elements adhere to a linear elastic fracture criterion which is in between the statistical Weibull’s size effect law and the energetic Bažant’s size effect law. ABAQUS model of 3-point bending tests are developed with different material properties of the interface elements and the layers which are validated against the vi experimental results. Upon parametrisation of the fracture energy and peak flexural stress values, it has been noted that the properties of the interface elements are categorised by the tests done with the loading direction parallel to the layer orientation. This has also been corroborated by Mode II fracture tests following Reinhardt and Xu (2000) adopted to printed elements which were originally proposed for conventional concrete. The study of the durability of printed specimens in comparison with cast specimens is essential for the understanding of the overall performance of printed elements. It is understood that due to the presence of interfaces which act as imperfections, the printed elements are more prone to the ingress of aggressive ions such as Chloride. Sections of this study have been dedicated to study the effect of the presence of interfaces on the ingress of chlorides by analysing specimens with different layer orientations and different locations. A 2D approach to accurately establish the depth of penetration and therefore the diffusion coefficient in otherwise irregular surfaces unique to printed structures has been proposed. Overall, the testing and analytical methodologies developed in this thesis have proven to be suitable for applications on-field and useful for the adaption of current design standards and principles to printable cementitious mortars both in the fresh and hardened states. Further studies on the structural design of printed concrete structures inspired from this work will add great value to the large-scale applicability of the Concrete 3D Printing technology.File | Dimensione | Formato | |
---|---|---|---|
Thesis - Sriram Kompella - Reviewer Comments included final version.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Final version of thesis
Dimensione
8.15 MB
Formato
Adobe PDF
|
8.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/241557