This doctoral thesis investigates the development of patient-specific solutions for maxillofacial and oral surgery, through the integration of image-based modelling for designing 3D-printed devices. The research addresses two main clinical applications: orthognathic surgery and guided bone regeneration (GBR), with the objective of designing and biomechanically evaluating customized orthognathic plates and membranes for GBR. Orthognathic surgery corrects maxillofacial deformities and malocclusions to restore physiological anatomical and functional relationships. During the surgery the maxilla is resected and repositioned to ensure a correct occlusion for the patient. Then, titanium plates and screws are used to fix the proper position of the maxilla. In orthognathic procedures, it is common practice to leave plates and screws implanted to reduce patient discomfort caused by the removal surgery. After sufficient bone regeneration, these devices can be removed because of their function of providing bone stability until regeneration is completed. Moreover, some post-operative complications may occur so that the plates and the screws must be removed, and in addition there is an aesthetic reason for their removal because with aging or weight loss the plates could become evident in the patient’s face. The first part of the research focuses on the design and numerical optimization of 3D-printed titanium plates for orthognathic surgery. A finite element model (FEM) of a patient-specific clinical case was created starting from pre-operative computed tomography (CT) imaging. The model included bone segments, fixation screws, and customized titanium plates. Biomechanical performance was assessed under static and cyclic loading conditions, using high- and low-cycle fatigue criteria (Matake and Fatemi-Socie). The fatigue life of the plates was estimated using an in-house MATLAB implementation. Critical design parameters such as fillet radius and thickness were modified iteratively to improve fatigue strength while maintaining anatomical compatibility. The optimized plates demonstrated sufficient fatigue life and improved mechanical reliability compared to initial designs. Guided bone regeneration is a common surgical procedure for bone augmentation in alveolar ridge defects. The fundamental principle of GBR is to use a barrier membrane to separate the bone defect from the surrounding connective tissue, to prevent fast-growing soft tissue from developing into the bone defect, to allow sufficient growth space for osteoblasts in the defect, and to induce bone augmentation. Titanium membranes are typically used in case of large defects due to their mechanical properties to ensure the space for bone regeneration. The membrane is used to maintain the stability of a graft, composed of deproteinized bovine bone and autologous bone, which is used to fill the defect and to promote regeneration. In GBR procedures, after bone regeneration, a second surgery is necessary to remove the membrane and to insert one or more dental implants. Additionally, in both orthognathic and GBR applications, the radiopacity of titanium can affect the imaging of post-operative X-ray examinations, complicating the assessment of bone healing. Thus, the two specific contexts of orthognathic surgery and guided bone regeneration share the possibility to be improved using biodegradable devices with adequate mechanical properties that do not require removal surgery. In the second part, the thesis explores the feasibility of using biodegradable PLA/HA composites as an alternative to titanium for manufacturing fixation screws and GBR membranes through fused deposition modelling (FDM). Samples with different HA contents (0\%, 20\%, and 35\% by weight) were printed and characterized for printing fidelity and micro-mechanical properties. The influence of printing parameters (temperature, HA content) on printing fidelity and mechanical performance was systematically evaluated. Moreover, the printability of patient-specific membranes for guided bone regeneration and fixation screws using the FDM technique was explored including also roughness measurements and a physical characterization of the composite material. Additionally, the degradation behavior of PLA-based materials was studied over 24 days in phosphate-buffered saline (PBS) to assess changes in mass, molecular weight, and mechanical stability. Results showed that PLA/HA with 20\% of HA particles seems a suitable candidate for temporary patient-specific devices in maxillofacial surgery. The final part of the work introduces a digital workflow for image-based patient-specific modelling aimed at supporting biomechanical evaluation of 3D-printed devices and the device/bone and screws/bone interfaces. This process includes the calibration of bone density from cone-beam computed tomography (cbCT) images, segmentation of anatomical structures, assignment of patient-specific image-based material properties and patient-specific finite element analysis (FEA). The accurate modelling of bone properties, considering its anisotropy and non-homogeneity, allows for a reliable capture of bone displacement and strain in FEA. Overall, the thesis demonstrates the potential of combining numerical modelling, medical imaging, and additive manufacturing to develop and assess patient-specific devices that address both functional and clinical challenges in oral and maxillofacial surgery. The findings provide a framework for the design of custom devices with improved biomechanical performance and open the way to the use of bioresorbable materials that would eliminate the need for device removal.
Questa tesi di dottorato analizza lo sviluppo di soluzioni paziente-specifiche in ambito di chirurgia maxillo-facciale e orale, integrando la modellazione basata su immagini per la progettazione di dispositivi stampati in 3D. La ricerca si concentra su due principali applicazioni cliniche: la chirurgia ortognatica e la rigenerazione ossea guidata (GBR), con l’obiettivo di progettare e valutare biomeccanicamente placche ortognatiche e membrane personalizzate per la GBR. La chirurgia ortognatica corregge le deformità maxillo-facciali e le malocclusioni per ripristinare relazioni anatomiche e funzionali fisiologiche. Durante l’intervento, viene il mascellare superiore viene resecato e riposizionato per garantire una corretta occlusione del paziente. Successivamente, si utilizzano placche e viti in titanio per fissare l’osso mascellare nella posizione corretta. Nelle procedure ortognatiche, è pratica comune lasciare placche e viti impiantate per ridurre il disagio del paziente causato da un intervento di rimozione. Dopo una sufficiente rigenerazione ossea, questi dispositivi possono essere rimossi, avendo assolto alla loro funzione di stabilizzazione. Inoltre, possono insorgere complicanze post-operatorie che rendono necessaria la rimozione delle placche e delle viti; vi è anche una motivazione estetica per la loro rimozione, poiché con l’invecchiamento o la perdita di peso le placche potrebbero diventare visibili sul viso del paziente. La prima parte della ricerca si concentra sulla progettazione e sull’ottimizzazione numerica di placche in titanio stampate in 3D per la chirurgia ortognatica. È stato creato un modello ad elementi finiti (FEM) di un caso clinico a partire da immagini di tomografia computerizzata (CT) pre-operatorie. Il modello includeva segmenti ossei, viti di fissaggio e placche in titanio personalizzate. Le prestazioni biomeccaniche sono state valutate in condizioni di carico statico e ciclico, utilizzando criteri di fatica ad alto e basso numero di cicli (Matake e Fatemi-Socie). La durata a fatica delle placche è stata stimata mediante un algoritmo implementato in MATLAB. Parametri di progetto critici come il raggio di raccordo e lo spessore sono stati modificati iterativamente per migliorare la resistenza a fatica preservando la compatibilità anatomica. Le placche ottimizzate hanno dimostrato una durata a fatica sufficiente e una maggiore affidabilità meccanica rispetto al design iniziale. La rigenerazione ossea guidata è una procedura chirurgica comune utilizzata per aumentare l'osso nei difetti della cresta alveolare. Il principio fondamentale della GBR consiste nell’utilizzo di una membrana per separare il difetto osseo dal tessuto connettivo circostante. Questa membrana impedisce ai tessuti molli a crescita rapida di occupare lo spazio destinato alla rigenerazione ossea, creando così le condizioni ideali per la crescita degli osteoblasti e la formazione di nuovo osso. Le membrane in titanio sono comunemente utilizzate in caso di grandi difetti grazie alle loro proprietà meccaniche, che garantiscono uno spazio protetto per la rigenerazione ossea. Queste membrane, spesso utilizzate in combinazione con innesti ossei, composti da osso bovino deproteinizzato e osso autologo, mantengono la stabilità dell'innesto promuovendo così la rigenerazione ossea. Nelle procedure GBR, dopo la rigenerazione ossea, è necessario un secondo intervento per rimuovere la membrana e inserire uno o più impianti dentali. Inoltre, sia nella chirurgia ortognatica che nella GBR, la radiopacità del titanio può influenzare l’imaging delle radiografie post-operatorie, complicando la valutazione della guarigione. Pertanto, in entrambi i contesti si prospetta un possibile miglioramento attraverso l’uso di dispositivi biodegradabili con proprietà meccaniche adeguate, che non richiedano un intervento di rimozione. Nella seconda parte, la tesi esplora la fattibilità dell’uso di compositi biodegradabili in PLA/HA come alternativa al titanio per la produzione di viti di fissaggio e membrane per GBR mediante stampa 3D a deposizione fusa (FDM). Sono stati stampati e caratterizzati campioni con diversi contenuti di HA (0%, 20% e 35% in peso), valutandone la fedeltà di stampa e le proprietà micro-meccaniche. È stata sistematicamente analizzata l’influenza dei parametri di stampa (temperatura, contenuto di HA) sulla fedeltà di stampa e sulle prestazioni meccaniche. Inoltre, è stata esplorata la fattibilità di stampa di membrane paziente-specifiche per la GBR e di viti di fissaggio mediante FDM, includendo misure di rugosità e caratterizzazione fisica del materiale composito. È stato anche studiato il comportamento di degradazione dei materiali a base di PLA per 24 giorni in soluzione salina tamponata (PBS), valutando le variazioni di massa, peso molecolare e stabilità meccanica. I risultati hanno mostrato che il PLA/HA con il 20% di particelle di HA sembra essere un candidato adatto per dispositivi temporanei personalizzati in chirurgia maxillo-facciale. La parte finale della tesi introduce un flusso di lavoro per la modellazione personalizzata basata su immagini, finalizzato a supportare la valutazione biomeccanica di dispositivi stampati in 3D e delle interfacce dispositivo/osso e viti/osso. Questo processo include la calibrazione della densità ossea da immagini di tomografia computerizzata cone-beam (cbCT), la segmentazione delle strutture anatomiche, l’assegnazione di proprietà dei materiali paziente-specifiche basate su immagini e l’analisi ad elementi finiti (FEA). Una modellazione accurata delle proprietà ossee, considerando la loro anisotropia e non omogeneità, consente una rappresentazione affidabile degli spostamenti e delle deformazioni ossee nell’analisi FEA. Nel complesso, la tesi dimostra il potenziale della combinazione tra modellazione numerica, imaging medico e manifattura additiva per sviluppare e valutare dispositivi personalizzati che rispondano sia a sfide funzionali che cliniche nella chirurgia orale e maxillo-facciale. I risultati forniscono un quadro per la progettazione di dispositivi su misura con migliori prestazioni biomeccaniche e aprono la strada all’uso di materiali biodegradabili che eliminerebbero la necessità di un intervento chirurgico per la rimozione del dispositivo.
Patient-specific solutions for maxillofacial and oral surgery: image-based modelling and design for 3D-printed devices
Rota, Ilaria
2024/2025
Abstract
This doctoral thesis investigates the development of patient-specific solutions for maxillofacial and oral surgery, through the integration of image-based modelling for designing 3D-printed devices. The research addresses two main clinical applications: orthognathic surgery and guided bone regeneration (GBR), with the objective of designing and biomechanically evaluating customized orthognathic plates and membranes for GBR. Orthognathic surgery corrects maxillofacial deformities and malocclusions to restore physiological anatomical and functional relationships. During the surgery the maxilla is resected and repositioned to ensure a correct occlusion for the patient. Then, titanium plates and screws are used to fix the proper position of the maxilla. In orthognathic procedures, it is common practice to leave plates and screws implanted to reduce patient discomfort caused by the removal surgery. After sufficient bone regeneration, these devices can be removed because of their function of providing bone stability until regeneration is completed. Moreover, some post-operative complications may occur so that the plates and the screws must be removed, and in addition there is an aesthetic reason for their removal because with aging or weight loss the plates could become evident in the patient’s face. The first part of the research focuses on the design and numerical optimization of 3D-printed titanium plates for orthognathic surgery. A finite element model (FEM) of a patient-specific clinical case was created starting from pre-operative computed tomography (CT) imaging. The model included bone segments, fixation screws, and customized titanium plates. Biomechanical performance was assessed under static and cyclic loading conditions, using high- and low-cycle fatigue criteria (Matake and Fatemi-Socie). The fatigue life of the plates was estimated using an in-house MATLAB implementation. Critical design parameters such as fillet radius and thickness were modified iteratively to improve fatigue strength while maintaining anatomical compatibility. The optimized plates demonstrated sufficient fatigue life and improved mechanical reliability compared to initial designs. Guided bone regeneration is a common surgical procedure for bone augmentation in alveolar ridge defects. The fundamental principle of GBR is to use a barrier membrane to separate the bone defect from the surrounding connective tissue, to prevent fast-growing soft tissue from developing into the bone defect, to allow sufficient growth space for osteoblasts in the defect, and to induce bone augmentation. Titanium membranes are typically used in case of large defects due to their mechanical properties to ensure the space for bone regeneration. The membrane is used to maintain the stability of a graft, composed of deproteinized bovine bone and autologous bone, which is used to fill the defect and to promote regeneration. In GBR procedures, after bone regeneration, a second surgery is necessary to remove the membrane and to insert one or more dental implants. Additionally, in both orthognathic and GBR applications, the radiopacity of titanium can affect the imaging of post-operative X-ray examinations, complicating the assessment of bone healing. Thus, the two specific contexts of orthognathic surgery and guided bone regeneration share the possibility to be improved using biodegradable devices with adequate mechanical properties that do not require removal surgery. In the second part, the thesis explores the feasibility of using biodegradable PLA/HA composites as an alternative to titanium for manufacturing fixation screws and GBR membranes through fused deposition modelling (FDM). Samples with different HA contents (0\%, 20\%, and 35\% by weight) were printed and characterized for printing fidelity and micro-mechanical properties. The influence of printing parameters (temperature, HA content) on printing fidelity and mechanical performance was systematically evaluated. Moreover, the printability of patient-specific membranes for guided bone regeneration and fixation screws using the FDM technique was explored including also roughness measurements and a physical characterization of the composite material. Additionally, the degradation behavior of PLA-based materials was studied over 24 days in phosphate-buffered saline (PBS) to assess changes in mass, molecular weight, and mechanical stability. Results showed that PLA/HA with 20\% of HA particles seems a suitable candidate for temporary patient-specific devices in maxillofacial surgery. The final part of the work introduces a digital workflow for image-based patient-specific modelling aimed at supporting biomechanical evaluation of 3D-printed devices and the device/bone and screws/bone interfaces. This process includes the calibration of bone density from cone-beam computed tomography (cbCT) images, segmentation of anatomical structures, assignment of patient-specific image-based material properties and patient-specific finite element analysis (FEA). The accurate modelling of bone properties, considering its anisotropy and non-homogeneity, allows for a reliable capture of bone displacement and strain in FEA. Overall, the thesis demonstrates the potential of combining numerical modelling, medical imaging, and additive manufacturing to develop and assess patient-specific devices that address both functional and clinical challenges in oral and maxillofacial surgery. The findings provide a framework for the design of custom devices with improved biomechanical performance and open the way to the use of bioresorbable materials that would eliminate the need for device removal.| File | Dimensione | Formato | |
|---|---|---|---|
|
dissertation - Rota.pdf
non accessibile
Dimensione
75.65 MB
Formato
Adobe PDF
|
75.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/241717