CubeSats have rewritten the rulebook for space missions, but their postcard-sized faces leave almost no breathing room when more than one radio task is on the menu. This thesis tackles that limitation by squeezing three purpose-built antennas onto a single CubeSat and, in doing so, turns the craft into a dual-role observer that can watch the world’s oceans and monitor near-Earth space at the same time. The first antenna, a compact quarter-wave monopole tuned to 162 MHz, collects Automatic Identification System (AIS) messages from ships, extending coastal vessel tracking to a 600 km orbit without relying on bulky deployables. Sharing the same face is a righthand circularly polarised microstrip patch that spans 1.2 to 1.8 GHz, harvesting reflected GPS and Galileo signals so the satellite can sense sea-surface conditions and space debris with GNSS-reflectometry. Completing the trio is a four-element S-band patch array centred at 2.4 GHz, whose narrow, circularly polarised beam supports high-rate downlinks and focused radar-style experiments. Beyond the hardware itself, the thesis sets out a repeatable design flow, from translating signal requirements into link budgets, through full-wave optimisation, to system-level integration, that future small-sat teams can adopt. With the simulations complete, the next step is to build and fly a demonstration unit, paving the way for constellations of miniature satellites that can simultaneously police busy sea lanes and guard the space around them.
I CubeSat hanno rivoluzionato le missioni spaziali, ma le loro superfici grandi quanto una cartolina offrono pochissimo spazio quando sono richiesti più compiti radio. Questa tesi affronta tale limitazione integrando tre antenne specializzate su un singolo CubeSat, trasformando così il satellite in un osservatore a doppio ruolo, capace di monitorare sia gli oceani terrestri che lo spazio circumterrestre. La prima antenna, un monopolo compatto di un quarto d’onda sintonizzato a 162 MHz, raccoglie i messaggi del sistema AIS (Automatic Identification System) inviati dalle navi, estendendo il tracciamento marittimo fino a un’orbita di 600 km senza la necessità di strutture dispiegabili. Sulla stessa faccia è montata una patch microstrip polarizzata circolarmente verso destra, operante da 1.2 a 1.8 GHz, capace di ricevere segnali riflessi dai sistemi GPS e Galileo per effettuare riflettometria GNSS e rilevare condizioni marine e detriti spaziali. A completare il trio è una matrice di quattro patch in banda S, centrata a 2.4 GHz, la cui stretta fascio polarizzato circolarmente supporta downlink ad alta velocità e sperimentazioni radar mirate. Oltre all’hardware, la tesi propone un flusso di progetto replicabile, che parte dai requisiti di segnale, passa attraverso l’ottimizzazione elettromagnetica completa e arriva all’integrazione a livello di sistema, offrendo un modello adottabile da future missioni di small-sat. Completate le simulazioni, il prossimo passo sarà costruire e lanciare un’unità dimostrativa, aprendo la strada a costellazioni di satelliti in miniatura capaci di controllare simultaneamente le rotte marittime e lo spazio che le circonda.
Design and analysis of antennas for space-based RF signal detection in MDA and SSA applications
Venkatesan, Sri Hari Sudarshan
2024/2025
Abstract
CubeSats have rewritten the rulebook for space missions, but their postcard-sized faces leave almost no breathing room when more than one radio task is on the menu. This thesis tackles that limitation by squeezing three purpose-built antennas onto a single CubeSat and, in doing so, turns the craft into a dual-role observer that can watch the world’s oceans and monitor near-Earth space at the same time. The first antenna, a compact quarter-wave monopole tuned to 162 MHz, collects Automatic Identification System (AIS) messages from ships, extending coastal vessel tracking to a 600 km orbit without relying on bulky deployables. Sharing the same face is a righthand circularly polarised microstrip patch that spans 1.2 to 1.8 GHz, harvesting reflected GPS and Galileo signals so the satellite can sense sea-surface conditions and space debris with GNSS-reflectometry. Completing the trio is a four-element S-band patch array centred at 2.4 GHz, whose narrow, circularly polarised beam supports high-rate downlinks and focused radar-style experiments. Beyond the hardware itself, the thesis sets out a repeatable design flow, from translating signal requirements into link budgets, through full-wave optimisation, to system-level integration, that future small-sat teams can adopt. With the simulations complete, the next step is to build and fly a demonstration unit, paving the way for constellations of miniature satellites that can simultaneously police busy sea lanes and guard the space around them.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Venkatesan.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Text of the thesis
Dimensione
3.55 MB
Formato
Adobe PDF
|
3.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/241917