Pulse Detonation Engines (PDEs) offer a promising alternative to traditional propulsion systems due to their higher thermodynamic efficiency, reduced weight, and more compact design. However, their practical implementation remains challenging, primarily due to the harsh detonation environment and the complexity of modelling unsteady flow phenomena. This thesis focuses on the selection, specification, and simulation of components for a PDE experimental setup using hydrogen and air as propellants. Drawing from existing setups, critical elements such as valves, sensors, and protective cooling systems are chosen to ensure robustness and adaptability. A key innovation of this work lies in the design’s enhanced versatility for future adaptation to Rotating Detonation Engines (RDEs). Unlike previous setups, this configuration introduces piezoresistive pressure transducers—also suitable for RDEs—and advanced diagnostics such as ion probes and Background-Oriented Schlieren imaging, replacing conventional methods to improve measurement accuracy and system insight. A comprehensive Simulink® model simulates the behaviour of the selected components to assess their influence on flow conditions and engine performance. Key metrics such as pressure and temperature along the feeding line are analysed, highlighting the non-negligible effects of even small inefficiencies. The simulation also enables performance evaluations under varying operational conditions, such as detonation frequency and setup dimensions. This modelling approach provides valuable insight into the interplay between component behavior and overall engine performance and serves as a reference for physical implementation. The findings support the practical realization of PDE systems and provide a pathway for extending the approach to RDE configurations.
I motori a detonazione pulsata (Pulse Detonation Engines, PDE) rappresentano un’alternativa promettente ai sistemi di propulsione tradizionali, grazie alla loro maggiore efficienza termodinamica, al peso ridotto e al design più compatto. Tuttavia, la loro implementazione pratica risulta ancora complessa, principalmente a causa dell’ambiente estremo generato dalla detonazione e della difficoltà di modellare i fenomeni di flusso non stazionario. Questa tesi si concentra sulla selezione, specifica e simulazione dei componenti per un banco prova sperimentale di PDE, utilizzando idrogeno e aria come propellenti. Basandosi su configurazioni già esistenti, sono stati selezionati elementi chiave come valvole, sensori e sistemi di raffreddamento protettivi, con l’obiettivo di garantire robustezza e adattabilità. Un’innovazione fondamentale di questo lavoro risiede nella maggiore versatilità del design, pensata per un futuro adattamento ai motori a detonazione rotante (Rotating Detonation Engines, RDE). A differenza delle configurazioni precedenti, questa implementazione introduce trasduttori di pressione piezoresistivi — compatibili anche con gli RDE — e sistemi diagnostici avanzati, come sonde a ioni e imaging Background-Oriented Schlieren, che sostituiscono i metodi convenzionali migliorando la precisione delle misure e la comprensione del sistema. Un modello completo in Simulink® simula il comportamento dei componenti selezionati per valutarne l’influenza sulle condizioni di flusso e sulle prestazioni del motore. Vengono analizzati parametri fondamentali come pressione e temperatura lungo la linea di alimentazione, evidenziando gli effetti non trascurabili anche di piccole inefficienze. La simulazione consente inoltre di valutare le prestazioni al variare delle condizioni operative, come la frequenza di detonazione e le dimensioni dell’impianto. Questo approccio modellistico fornisce indicazioni utili sull’interazione tra il comportamento dei singoli componenti e le prestazioni globali del motore, e rappresenta un valido riferimento per l’implementazione fisica del sistema. I risultati ottenuti supportano la realizzazione pratica dei PDE e aprono la strada a un’estensione metodologica verso le configurazioni RDE.
Design and simulation of an experimental pulse detonation engine setup
Cannavò, Alessandro
2024/2025
Abstract
Pulse Detonation Engines (PDEs) offer a promising alternative to traditional propulsion systems due to their higher thermodynamic efficiency, reduced weight, and more compact design. However, their practical implementation remains challenging, primarily due to the harsh detonation environment and the complexity of modelling unsteady flow phenomena. This thesis focuses on the selection, specification, and simulation of components for a PDE experimental setup using hydrogen and air as propellants. Drawing from existing setups, critical elements such as valves, sensors, and protective cooling systems are chosen to ensure robustness and adaptability. A key innovation of this work lies in the design’s enhanced versatility for future adaptation to Rotating Detonation Engines (RDEs). Unlike previous setups, this configuration introduces piezoresistive pressure transducers—also suitable for RDEs—and advanced diagnostics such as ion probes and Background-Oriented Schlieren imaging, replacing conventional methods to improve measurement accuracy and system insight. A comprehensive Simulink® model simulates the behaviour of the selected components to assess their influence on flow conditions and engine performance. Key metrics such as pressure and temperature along the feeding line are analysed, highlighting the non-negligible effects of even small inefficiencies. The simulation also enables performance evaluations under varying operational conditions, such as detonation frequency and setup dimensions. This modelling approach provides valuable insight into the interplay between component behavior and overall engine performance and serves as a reference for physical implementation. The findings support the practical realization of PDE systems and provide a pathway for extending the approach to RDE configurations.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Cannavo.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
19.82 MB
Formato
Adobe PDF
|
19.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/242197