This thesis investigates and develops innovative solutions for impact energy absorption, with a focus on advanced cellular materials enabled by additive manufacturing. The work is articulated into four main objectives: (1) the experimental and numerical characterization of 3D-printed cellular structures; (2) the identification of an industrial application requiring innovation in energy-absorbing components; (3) the design, optimization, prototyping, and validation of a novel protection device; and (4) the development of a feasible startup business model based on the achieved innovations. Initially, a range of lattice structures – including stochastic Voronoi and auxetic geometries – were studied through tailored simulation tools and impact testing. A comprehensive comparison of topologies and materials is provided, leading to the selection of helmet technology as a target application. Then, the suited industrial application for passive safety innovation is found within the field of personal protection equipment: crash helmets. Through extensive state-of-the-art analysis, experimental benchmarking, and real-accident reconstructions, current limitations across variuos fields in such head protections – with particular attention to bicycle helmets – were identified, particularly regarding rotational impacts. Building on these findings, two helmet prototypes incorporating optimized cellular liners were developed and tested. Both demonstrated superior impact performance compared to commercial references. Supporting these results, a suite of numerical tools for micromechanical modelling and topology optimization was developed and validated. Finally, the thesis lays the foundation for the creation of a startup, CELLMETS, aimed at producing advanced cellular liners for helmet and PPE manufacturers. Two patents were filed: one outlining a design methodology for cellular helmets, and another introducing a novel auxetic lattice optimized for shear-compression impacts. Overall, this work demonstrates the feasibility and effectiveness of 3D-printed cellular structures in enhancing impact protection and sets a precedent for their industrial implementation. Future developments are expected to expand the scientific understanding, industrial integration, and commercial viability of such technologies, with the ultimate goal of improving brain injury prevention beyond current standards.
Questa tesi indaga e sviluppa soluzioni innovative per l’assorbimento dell’energia d’impatto, con un focus su materiali cellulari avanzati resi possibili dalla manifattura additiva. Il lavoro si articola in quattro principali obiettivi: (1) la caratterizzazione sperimentale e numerica di strutture cellulari stampate in 3D; (2) l’identificazione di un’applicazione industriale che richieda innovazione nei componenti assorbitori di energia; (3) la progettazione, ottimizzazione, prototipazione e validazione di un nuovo dispositivo di protezione; (4) lo sviluppo di un modello di business startup realistico basato sulle innovazioni raggiunte. Inizialmente, è stata studiata una gamma di strutture reticolari – incluse geometrie stocastiche di Voronoi e auxetiche – attraverso strumenti di simulazione dedicati e prove d’impatto. Viene fornito un confronto completo tra topologie e materiali, che porta alla selezione della tecnologia dei caschi come applicazione target. Successivamente, l’applicazione industriale più adatta per l’innovazione nella sicurezza passiva è stata individuata nel settore dei dispositivi di protezione individuale: i caschi protettivi. Attraverso un’estesa analisi dello stato dell’arte, prove sperimentali di benchmarking e ricostruzioni di incidenti reali, sono stati individuati i limiti attuali di tali protezioni craniche – con particolare attenzione ai caschi da bicicletta – soprattutto in relazione agli impatti rotazionali. Sulla base di questi risultati, sono stati sviluppati e testati due prototipi di casco con calotte cellulari ottimizzate. Entrambi hanno dimostrato prestazioni d’impatto superiori rispetto ai riferimenti commerciali. A supporto di tali risultati, è stato sviluppato e validato un insieme di strumenti numerici per la modellazione micromeccanica e l’ottimizzazione topologica. Infine, la tesi getta le basi per la creazione della startup CELLMETS, finalizzata alla produzione di calotte cellulari avanzate per produttori di caschi e DPI. Sono stati depositati due brevetti: uno relativo a una metodologia di progettazione per caschi cellulari, e un altro che introduce una nuova struttura auxetica ottimizzata per impatti combinati taglio-compressione. Nel complesso, questo lavoro dimostra la fattibilità e l’efficacia delle strutture cellulari stampate in 3D nel miglioramento della protezione dagli impatti e stabilisce un precedente per la loro implementazione industriale. Sviluppi futuri sono attesi per ampliare la comprensione scientifica, l’integrazione industriale e la sostenibilità commerciale di tali tecnologie, con l’obiettivo ultimo di migliorare la prevenzione dei traumi cranici oltre gli standard attuali.
Design of an additively manufactured cellular crash helmet
Colamartino, Ivan
2024/2025
Abstract
This thesis investigates and develops innovative solutions for impact energy absorption, with a focus on advanced cellular materials enabled by additive manufacturing. The work is articulated into four main objectives: (1) the experimental and numerical characterization of 3D-printed cellular structures; (2) the identification of an industrial application requiring innovation in energy-absorbing components; (3) the design, optimization, prototyping, and validation of a novel protection device; and (4) the development of a feasible startup business model based on the achieved innovations. Initially, a range of lattice structures – including stochastic Voronoi and auxetic geometries – were studied through tailored simulation tools and impact testing. A comprehensive comparison of topologies and materials is provided, leading to the selection of helmet technology as a target application. Then, the suited industrial application for passive safety innovation is found within the field of personal protection equipment: crash helmets. Through extensive state-of-the-art analysis, experimental benchmarking, and real-accident reconstructions, current limitations across variuos fields in such head protections – with particular attention to bicycle helmets – were identified, particularly regarding rotational impacts. Building on these findings, two helmet prototypes incorporating optimized cellular liners were developed and tested. Both demonstrated superior impact performance compared to commercial references. Supporting these results, a suite of numerical tools for micromechanical modelling and topology optimization was developed and validated. Finally, the thesis lays the foundation for the creation of a startup, CELLMETS, aimed at producing advanced cellular liners for helmet and PPE manufacturers. Two patents were filed: one outlining a design methodology for cellular helmets, and another introducing a novel auxetic lattice optimized for shear-compression impacts. Overall, this work demonstrates the feasibility and effectiveness of 3D-printed cellular structures in enhancing impact protection and sets a precedent for their industrial implementation. Future developments are expected to expand the scientific understanding, industrial integration, and commercial viability of such technologies, with the ultimate goal of improving brain injury prevention beyond current standards.| File | Dimensione | Formato | |
|---|---|---|---|
|
thesis.pdf
accessibile in internet per tutti a partire dal 07/09/2026
Dimensione
201.63 MB
Formato
Adobe PDF
|
201.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/242358