Track cycling represents the peak of performance in competitive cycling, where every detail is carefully optimized to reduce power losses and improve athlete efficiency. In this context, the present study provides a comprehensive analysis of the rolling resistance force under various tyre configurations, considering the characteristic geometry of a velodrome and the dynamics of a cyclist. Data acquisitions are performed on both the laboratory drum machine and the Montichiari velodrome (BS, Italy). The main objective is to establish a methodology for replicating track dynamics in an indoor laboratory through the implementation of a new protocol for an innovative testing machine. This protocol accounts for the key factors the influence track performance, such as track geometry and inclination, roll angles, load variations, and speed changes experienced on a real velodrome lap. To this end, a simulation-based analytical model has been developed to describe a cyclist’s dynamics on the track. Based on rolling resistance performance data acquired in the laboratory, it predicts the Crr at various inflation pressures and separately for the front and rear wheel. Furthermore, the model can process field data from different velodromes, incorporating the specific geometry of each track, and extracts Crr values for specific combinations of tyre configuration. It uses as input variables the power and wheel velocity across multiple laps performed. Tests are performed on different tyre types, Tubeless Ready (TLR) with latex inner tubes or sealant mounting, tubular tyres with TPU or latex inner tubes, in different sizes (23 and 25 mm) over a range of pressures, velocities, and loads. Regarding the main findings of the laboratory test method: - The 25 mm tyre showed superior performance compared to the 23 mm, in both TLR (about 10%) and tubular (about 20%) configurations. - For tubulars, the differences between inner tube materials (latex and TPU) are generally small, remaining below 6%. However, for the 23 mm tyre at higher loads (above 400 N per wheel), TPU outperforms latex. Conversely, for the 25 mm tyre, latex provides better results up to higher loads (around 500 N per wheel). Hence, performance is strongly dependent on the load per wheel. - For tubulars, tape mounting reduced performance by approximately 30%, making traditional gluing the recommended choice. - For TLR tyres, sealant mounting does not deliver any relevant performance improvement. Regarding the on-track acquisitions: - At all pressures and velocities, the 23 mm tyre outperformed the 25 mm, in both TLR and tubular configurations with a difference that increase as pressure increase up to 16%. - For tubular inner tube materials, latex showed better results than TPU, with an average gap of about 14% at the three tested pressures. However, in these acquisitions, only the 23 mm type is available in both materials, making it impossible to confirm the consistency of this trend between both tested sizes. For the track tests, the average load per wheel is estimated at 430 N under static conditions and approximately 450 N when accounting for load variations due to track dynamics. - Comparing tubulars and TLRs in their usual race pressure setups, the TLRs showed better performance (11% for 23 mm and 20% for 25 mm), despite operating at a pressure 6 bar lower (10 bar vs. 16 bar). Regarding the data recorded by the IMU devices during the on-track acquisitions: - A roll angle of about 25° is measured at 40 km/h, increasing by approximately 10° at 50 km/h relative to the verical plane. - The relative roll angles, measured with respect to the normal plane to the track surface, show peaks at beginning of the curve, reaching around 25° at 40 km/h. At different speeds the peaks magnitude decreases as velocity increases (20° at 50 km/h). - The steering angle in the turning section of the track is measured at 1.2–1.3°. Of particular interest is the inversion of size performance between laboratory and field results. A similar observation applies to the threshold load per wheel for tubulars, where the TPU inner tube version begins to outperform the latex one. That rises the importance to reproduce real dynamics variation as load, velocity and roll angle in laboratory tests. Although the general trend of decreasing Crr with increasing pressure and increasing as velocity is confirmed, field tests exhibited wider and less consistent performance gains between pressure steps.
Il ciclismo su pista rappresenta l’apice dell'ottimizazione della prestazione nel ciclismo, dove ogni dettaglio è accuratamente studiato per ridurre le perdite di potenza e migliorare l’efficienza dell’atleta. In questo contesto, il presente studio fornisce un’analisi completa della forza di resistenza al rotolamento al variare di diversi pneumatici da pista, considerando la geometria caratteristica di un velodromo e la dinamica del ciclista. Le acquisizioni dati sono state effettuate sia una macchina a tamburo in laboratorio sia al velodromo di Montichiari (BS, Italia). L’obiettivo principale è stabilire una metodologia per replicare le dinamiche di pista in laboratorio, attraverso l’implementazione di un nuovo protocollo per una macchina di prova di nuova concezione. Il protocollo sviluppato tiene conto dei principali fattori che influenzano le prestazioni su pista, come geometria e inclinazione del tracciato, angoli di rollio, variazioni di carico e cambi di velocità sperimentati in un giro di velodromo. A tal fine, è stato sviluppato un modello analitico basato su simulazione per descrivere la dinamica di un ciclista in pista. Sulla base dei dati di resistenza al rotolamento acquisiti in laboratorio, il modello predice il Crr a diverse pressioni di gonfiaggio e differenzia rispetto Lla ruota anteriore e posteriore. Inoltre, il modello è in grado di elaborare dati raccolti sul campo per ogni velodromo, incorporando la geometria specifica di ciascuna pista, ed estrarre i valori di Crr per specifiche combinazioni di configurazioni di pneumatici. Come variabili di input utilizza la potenza e la velocità della ruota durante le acquisizioni. Le prove sono state condotte su diversi tipi di pneumatici: Tubeless Ready (TLR) con camere d’aria in lattice o montaggio con sigillante, tubolari con camere d’aria in TPU o lattice, in diverse sezioni (23 e 25 mm). Tutti provati in un determinato intervallo di pressioni, velocità e carichi. Principali risultati del metodo di prova in laboratorio: - Il pneumatico da 25 mm ha mostrato prestazioni superiori rispetto al 23 mm, sia in configurazione TLR (circa 10%) sia tubolare (circa 20%). - Nei tubolari, le differenze tra i materiali delle camere d’aria (lattice e TPU) sono generalmente ridotte, rimanendo sotto il 6%. Per il 23 mm a carichi elevati (oltre 400 N per ruota), il TPU supera il lattice. Al contrario, per il 25 mm il lattice fornisce risultati migliori fino a carichi più alti (circa 500 N per ruota). Pertanto, la prestazione dipende fortemente dal carico per ruota. - Per i tubolari, il montaggio con nastro riduce la prestazione di circa il 30%, rendendo la tradizionale incollatura la scelta raccomandata. - Per i TLR, il montaggio con sigillante non comporta alcun miglioramento prestazionale rilevante. Risultati delle acquisizioni in pista: - A tutte le pressioni e velocità, il pneumatico da 23 mm ha superato il 25 mm, sia in configurazione TLR che tubolare, con una differenza che aumenta all’aumentare della pressione fino al 16%. - Nei tubolari, quelli composti con camere d’aria in lattice hanno mostrato risultati migliori rispetto al TPU, con uno scarto medio di circa il 14% alle tre pressioni testate. Tuttavia, in queste acquisizioni solo il modello da 23 mm era disponibile in entrambi i materiali, rendendo impossibile confermare la consistenza della tendenza anche per la misura da 25 mm. Nei test in pista, il carico medio per ruota è stimato in 430 N in condizioni statiche e circa 450 N considerando le variazioni dovute alla dinamica della pista. - Confrontando tubolari e TLR nei loro abituali settaggi di pressione da gara, i TLR hanno mostrato prestazioni migliori (11% per il 23 mm e 20% per il 25 mm), pur operando a una pressione inferiore di 6 bar (10 bar vs. 16 bar). Dati registrati dai dispositivi IMU durante le acquisizioni in pista: - Un angolo di rollio di circa 25° è stato misurato rispetto al piano verticale a 40 km/h, aumentando di circa 10° a 50 km/h. - Gli angoli di rollio relativi, misurati rispetto al piano normale alla superficie della pista, mostrano picchi all’ingresso curva, raggiungendo circa 25° a 40 km/h. A variando la velocità l’ampiezza dei picchi diminuisce all’aumentare di essa (20° a 50 km/h). \item L’angolo di sterzo nella sezione curva della pista è stato misurato in 1,2–1,3°. Di particolare interesse è l’inversione delle prestazioni tra le due misure di pneumatico nei risultati di laboratorio rispetto a quelli in pista. Un simie differenza si riscontra anche per la soglia di carico per ruota nei tubolari, specificatamente nel punto in cui la versione con camera in TPU inizia a superare quella in lattice che non è coincidente fra i due medodi di prova. Questo sottolinea l’importanza di riprodurre in laboratorio le variazioni dinamiche reali di carico, velocità e angolo di rollio, che possono influenzare la prestazione dei diversi pneumatici. Mentre confrontando i risultati di entrambi i metodi, la tendenza generale della diminuzione del Crr all’aumentare della pressione e del suo incremento con la velocità è confermata. Tuttavia, le prove in pista hanno mostrato guadagni prestazionali più ampi e meno consistenti tra i diversi step di pressione.
Development of an integrated method for measuring rolling resistance of bicycle track tyres through laboratory and on-track testing
BIFFI, CLAUDIO
2024/2025
Abstract
Track cycling represents the peak of performance in competitive cycling, where every detail is carefully optimized to reduce power losses and improve athlete efficiency. In this context, the present study provides a comprehensive analysis of the rolling resistance force under various tyre configurations, considering the characteristic geometry of a velodrome and the dynamics of a cyclist. Data acquisitions are performed on both the laboratory drum machine and the Montichiari velodrome (BS, Italy). The main objective is to establish a methodology for replicating track dynamics in an indoor laboratory through the implementation of a new protocol for an innovative testing machine. This protocol accounts for the key factors the influence track performance, such as track geometry and inclination, roll angles, load variations, and speed changes experienced on a real velodrome lap. To this end, a simulation-based analytical model has been developed to describe a cyclist’s dynamics on the track. Based on rolling resistance performance data acquired in the laboratory, it predicts the Crr at various inflation pressures and separately for the front and rear wheel. Furthermore, the model can process field data from different velodromes, incorporating the specific geometry of each track, and extracts Crr values for specific combinations of tyre configuration. It uses as input variables the power and wheel velocity across multiple laps performed. Tests are performed on different tyre types, Tubeless Ready (TLR) with latex inner tubes or sealant mounting, tubular tyres with TPU or latex inner tubes, in different sizes (23 and 25 mm) over a range of pressures, velocities, and loads. Regarding the main findings of the laboratory test method: - The 25 mm tyre showed superior performance compared to the 23 mm, in both TLR (about 10%) and tubular (about 20%) configurations. - For tubulars, the differences between inner tube materials (latex and TPU) are generally small, remaining below 6%. However, for the 23 mm tyre at higher loads (above 400 N per wheel), TPU outperforms latex. Conversely, for the 25 mm tyre, latex provides better results up to higher loads (around 500 N per wheel). Hence, performance is strongly dependent on the load per wheel. - For tubulars, tape mounting reduced performance by approximately 30%, making traditional gluing the recommended choice. - For TLR tyres, sealant mounting does not deliver any relevant performance improvement. Regarding the on-track acquisitions: - At all pressures and velocities, the 23 mm tyre outperformed the 25 mm, in both TLR and tubular configurations with a difference that increase as pressure increase up to 16%. - For tubular inner tube materials, latex showed better results than TPU, with an average gap of about 14% at the three tested pressures. However, in these acquisitions, only the 23 mm type is available in both materials, making it impossible to confirm the consistency of this trend between both tested sizes. For the track tests, the average load per wheel is estimated at 430 N under static conditions and approximately 450 N when accounting for load variations due to track dynamics. - Comparing tubulars and TLRs in their usual race pressure setups, the TLRs showed better performance (11% for 23 mm and 20% for 25 mm), despite operating at a pressure 6 bar lower (10 bar vs. 16 bar). Regarding the data recorded by the IMU devices during the on-track acquisitions: - A roll angle of about 25° is measured at 40 km/h, increasing by approximately 10° at 50 km/h relative to the verical plane. - The relative roll angles, measured with respect to the normal plane to the track surface, show peaks at beginning of the curve, reaching around 25° at 40 km/h. At different speeds the peaks magnitude decreases as velocity increases (20° at 50 km/h). - The steering angle in the turning section of the track is measured at 1.2–1.3°. Of particular interest is the inversion of size performance between laboratory and field results. A similar observation applies to the threshold load per wheel for tubulars, where the TPU inner tube version begins to outperform the latex one. That rises the importance to reproduce real dynamics variation as load, velocity and roll angle in laboratory tests. Although the general trend of decreasing Crr with increasing pressure and increasing as velocity is confirmed, field tests exhibited wider and less consistent performance gains between pressure steps.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Biffi_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
4.85 MB
Formato
Adobe PDF
|
4.85 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Biffi_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
463.53 kB
Formato
Adobe PDF
|
463.53 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/242437