The study of masonry buildings is still confronted with considerable challenges related to computational effort, availability of input data, and limited application of methods. The development of trustworthy models that are able to capture the salient features of a process without resorting to unnecessary complexities is an essential component of any effective engineering analysis. At the same time, analysts must exercise the appropriate amount of caution with regard to the reliability of the answers given by computer models. The response of a nonlinear system can change in some cases, even when only minor adjustments are made to the physical parameters (loss of stability). A FE program that can solve the finite element problem for both static and dynamic loads while also handling the "cracking"characteristic of the material (or softening) is required. The feasibility of the proposal has been established by a series of experimental projects. The purpose of this study is to demonstrate the viability of a method for modeling cracking phenomena in historical masonry constructions. Mathematical Programming (MP) methods have been included into the traditional Finite Element approach, which has been used as the foundation for this method. MATLAB is the programming language that is used to solve problems involving mathematics and engineering. This language also helps to ease the process of developing programs by providing accurate error diagnostics and the ability to trace code. Matrix handling is simplified thanks to the presence of numerous intrinsic functions that execute standard linear algebra operations. The PLCP (Parametric Linear Complementary Problem) model enables a kinematic description of fracture between finite elements without requiring the reintroduction of interface elements. This is accomplished through the use of parametric linear complementarity. The method is applied to perform a structural analysis of historical church façades. Standard FE techniques, which think of cracks as a form of spread plasticity, will be used to evaluate the outcomes of this study. This thesis builds upon previous research on the same topic, with the following advancements: 1. The Matlab Program has been completely rewritten in order to comply with the following features: 1.1. The program has been organized in order to implement the concept of matrix formulas which describe the mathematical formulation; each matrix has been implemented in a specific function; the matrix formulation is intended to simplify the Matlab code and possibly optimize the “parallel” computing. 1.2. Coulomb friction (in vector form) and Mohr-Coulomb (in tensor form) have been imple mented as the basic failure condition. 2. The stability issue (multiplicity of solutions) has been addressed. 3. The engineering applications have been approached, in particular the in-plane problem of the façade of Santa Maria di Collemaggio in l’Aquila.
Lo studio degli edifici in muratura si confronta ancora con notevoli sfide legate all’impegno computazionale, alla disponibilità dei dati in ingresso e alla limitata applicazione dei metodi esistenti. Lo sviluppo di modelli affidabili, capaci di cogliere gli aspetti salienti di un processo senza ricorrere a complessità inutili, è un elemento essenziale per qualsiasi analisi ingegneristica efficace. Allo stesso tempo, gli analisti devono esercitare la dovuta cautela riguardo all'affidabilità delle risposte fornite dai modelli numerici. La risposta di un sistema non lineare può variare, in alcuni casi, anche a fronte di minime modifiche ai parametri fisici (perdita di stabilità). È quindi necessario un programma ad elementi finiti (FE) capace di risolvere il problema per carichi sia statici che dinamici, tenendo conto anche della caratteristica di "fessurazione" del materiale (o di softening). La fattibilità della proposta è stata dimostrata attraverso una serie di progetti sperimentali. Lo scopo di questo studio è dimostrare la validità di un metodo per la modellazione dei fenomeni di fessurazione nelle costruzioni storiche in muratura. Metodi di Programmazione Matematica (MP) sono stati integrati nell’approccio tradizionale agli Elementi Finiti, che costituisce la base del metodo. Il linguaggio di programmazione utilizzato per la risoluzione dei problemi matematici e ingegneristici è MATLAB, il quale facilita anche lo sviluppo dei programmi grazie a una diagnostica precisa degli errori e alla possibilità di tracciare il codice. La gestione delle matrici è semplificata dalla presenza di numerose funzioni intrinseche che eseguono operazioni standard di algebra lineare. Il modello PLCP (Problema Parametrico di Complementarità Lineare) consente una descrizione cinematica della frattura tra elementi finiti senza la necessità di reintrodurre elementi di interfaccia. Questo è reso possibile attraverso l’utilizzo della complementarità lineare parametrica. Il metodo viene applicato all’analisi strutturale delle facciate di chiese storiche. I risultati di questo studio verranno valutati mediante le tecniche standard ad elementi finiti, che considerano le fessure come una forma di plasticità diffusa. Questa tesi si basa su ricerche precedenti sullo stesso tema, apportando i seguenti avanzamenti: Il programma MATLAB è stato completamente riscritto per soddisfare i seguenti requisiti: 1.1. Il programma è stato strutturato in modo da implementare il concetto di formule matriciali che descrivono la formulazione matematica; ogni matrice è stata implementata in una funzione specifica; la formulazione matriciale è pensata per semplificare il codice MATLAB e, possibilmente, ottimizzare il calcolo “parallelo”. 1.2. La condizione di collasso di base è stata implementata attraverso l’attrito di Coulomb (in forma vettoriale) e Mohr-Coulomb (in forma tensoriale). 2. È stata affrontata la questione della stabilità (molteplicità delle soluzioni). 3. Sono state esplorate applicazioni ingegneristiche, in particolare il problema nel piano della facciata della chiesa di Santa Maria di Collemaggio a L’Aquila.
Advances in a mathematical programming approach for static method for FE elastic-plastic-fracturing masonry structures
GOLEMAJ, REJNALDA
2024/2025
Abstract
The study of masonry buildings is still confronted with considerable challenges related to computational effort, availability of input data, and limited application of methods. The development of trustworthy models that are able to capture the salient features of a process without resorting to unnecessary complexities is an essential component of any effective engineering analysis. At the same time, analysts must exercise the appropriate amount of caution with regard to the reliability of the answers given by computer models. The response of a nonlinear system can change in some cases, even when only minor adjustments are made to the physical parameters (loss of stability). A FE program that can solve the finite element problem for both static and dynamic loads while also handling the "cracking"characteristic of the material (or softening) is required. The feasibility of the proposal has been established by a series of experimental projects. The purpose of this study is to demonstrate the viability of a method for modeling cracking phenomena in historical masonry constructions. Mathematical Programming (MP) methods have been included into the traditional Finite Element approach, which has been used as the foundation for this method. MATLAB is the programming language that is used to solve problems involving mathematics and engineering. This language also helps to ease the process of developing programs by providing accurate error diagnostics and the ability to trace code. Matrix handling is simplified thanks to the presence of numerous intrinsic functions that execute standard linear algebra operations. The PLCP (Parametric Linear Complementary Problem) model enables a kinematic description of fracture between finite elements without requiring the reintroduction of interface elements. This is accomplished through the use of parametric linear complementarity. The method is applied to perform a structural analysis of historical church façades. Standard FE techniques, which think of cracks as a form of spread plasticity, will be used to evaluate the outcomes of this study. This thesis builds upon previous research on the same topic, with the following advancements: 1. The Matlab Program has been completely rewritten in order to comply with the following features: 1.1. The program has been organized in order to implement the concept of matrix formulas which describe the mathematical formulation; each matrix has been implemented in a specific function; the matrix formulation is intended to simplify the Matlab code and possibly optimize the “parallel” computing. 1.2. Coulomb friction (in vector form) and Mohr-Coulomb (in tensor form) have been imple mented as the basic failure condition. 2. The stability issue (multiplicity of solutions) has been addressed. 3. The engineering applications have been approached, in particular the in-plane problem of the façade of Santa Maria di Collemaggio in l’Aquila.| File | Dimensione | Formato | |
|---|---|---|---|
|
Rejnalda Golemaj_Thesis.pdf
non accessibile
Descrizione: Advances in a mathematical programming approach for static method for FE elastic-plastic-fracturing masonry structures
Dimensione
7.57 MB
Formato
Adobe PDF
|
7.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/242457