The technological capability to perform rendezvous between two controlled vehicles in space has witnessed a growing interest since the years of the space race between the U.S. and the Soviet Union in the 1960s as well as a progressive shift from automated and manned approaches to increasingly more autonomous systems. Moreover, in recent years, the growing number of debris comprising rocket bodies and defunct satellites in orbit around the Earth is shifting the focus of rendezvous to Active Debris Removal, which requires a servicing satellite to safely approach a non-cooperative target to begin proximity operations. The work presented in this thesis, developed in collaboration with the AOCS & GNC Design & Software department of OHB, aims to address such need by developing an integrated guidance software which a manoeuvring satellite may use to autonomously approach and inspect an orbiting target in a safe way. This is obtained by first developing closed-form impulsive manoeuvres for arbitrarily eccentric targets in the space of Relative Orbit Elements and then designing high-level guidance strategies which adopt such schemes to accomplish mission objectives. Ultimately, the implemented guidance law is validated in a high-fidelity MATLAB/Simulink simulator; the results demonstrate the effectiveness of the proposed architecture and its potential reusability across different mission scenarios.
La capacità tecnologica di effettuare operazioni di rendezvous tra due veicoli controllati nello spazio ha suscitato un crescente interesse sin dai tempi della corsa allo spazio tra gli Stati Uniti e l’Unione Sovietica negli anni ’60, nonché un progressivo passaggio da approcci automatizzati e con equipaggio umano a sistemi sempre più autonomi. Inoltre, negli ultimi anni, il numero crescente di detriti costituiti da stadi di lanciatori e satelliti fuori uso in orbita attorno alla Terra sta spostando l’obiettivo del rendezvous alla rimozione attiva dei detriti (Active Debris Removal (ADR)), che richiede che un satellite di servizio si avvicini in modo sicuro a un bersaglio non cooperativo per iniziare le operazioni di prossimità. Il lavoro presentato in questa tesi, sviluppato in collaborazione con il dipartimento di AOCS & GNC Design & Software di OHB, mira a rispondere a tale esigenza sviluppando un software di guida integrato che un satellite manovrabile può utilizzare per avvicinarsi in modo autonomo e ispezionare un bersaglio in orbita in modo sicuro. Ciò viene ottenuto sviluppando prima manovre impulsive in forma chiusa per bersagli arbitrariamente eccentrici nello spazio degli Elementi Orbitali Relativi e successivamente progettando strategie di guida di alto livello che adottano tali schemi per raggiungere gli obiettivi della missione. Infine, la legge di guida implementata viene convalidata in un simulatore orbitale in MATLAB/Simulink; i risultati dimostrano l’efficacia dell’architettura proposta e la sua potenziale riutilizzabilità in diversi scenari di missione.
Layered autonomous guidance for rendezvous and proximity operations
Buratti, Diego
2024/2025
Abstract
The technological capability to perform rendezvous between two controlled vehicles in space has witnessed a growing interest since the years of the space race between the U.S. and the Soviet Union in the 1960s as well as a progressive shift from automated and manned approaches to increasingly more autonomous systems. Moreover, in recent years, the growing number of debris comprising rocket bodies and defunct satellites in orbit around the Earth is shifting the focus of rendezvous to Active Debris Removal, which requires a servicing satellite to safely approach a non-cooperative target to begin proximity operations. The work presented in this thesis, developed in collaboration with the AOCS & GNC Design & Software department of OHB, aims to address such need by developing an integrated guidance software which a manoeuvring satellite may use to autonomously approach and inspect an orbiting target in a safe way. This is obtained by first developing closed-form impulsive manoeuvres for arbitrarily eccentric targets in the space of Relative Orbit Elements and then designing high-level guidance strategies which adopt such schemes to accomplish mission objectives. Ultimately, the implemented guidance law is validated in a high-fidelity MATLAB/Simulink simulator; the results demonstrate the effectiveness of the proposed architecture and its potential reusability across different mission scenarios.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Buratti_Thesis.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
6.7 MB
Formato
Adobe PDF
|
6.7 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Buratti_ExecutiveSummary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/242840