Magnetic confinement fusion is a promising technology that uses intense magnetic fields to confine high-temperature plasma and achieve controlled thermonuclear energy release. In this context, magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids in the presence of magnetic fields, such as liquid lead–lithium circulating in the cooling blanket of fusion reactors. In this work, the new solver magnetoHDFoam, developed at Politecnico di Milano, is employed to investigate MHD behavior in simplified geometries, with particular attention to the influence of magnetic field orientation and intensity. Since the solver is relatively recent, an additional objective is to assess its performance in canonical configurations, representing a preliminary step toward more complex reactor applications. The thesis addresses two main tasks. First, the effect of magnetic field orientation (parallel and perpendicular to the flow) and intensity on flow behavior in a backward-facing step (BFS) geometry is analyzed. Subsequently, the regulation of liquid metal flow in a horizontal pipe is studied, comparing constant and parabolic inlet velocity profiles in terms of flow structure, boundary layer development, and stability. Complementing the simulations, Dynamic Mode Decomposition (DMD) is applied to extract coherent spatiotemporal structures from unsteady MHD fields. By identifying the dominant modes of velocity and pressure evolution, DMD provides a reduced-order description of the dynamics and demonstrates its potential as an efficient predictive tool. The results show that the flow regime, velocity distribution, and time required to reach steady state vary significantly with magnetic field intensity and orientation, geometry, and boundary conditions. DMD analysis confirms that a limited number of modes is sufficient to capture the essential dynamics, enabling compact yet accurate reconstructions. These results improve the understanding of magnetic field effects on liquid metal flows and validate the capabilities of the magnetoHDFoam solver. While based on idealized geometries, the study highlights the importance of detailed flow analysis in fusion blankets and supports the development of accurate solvers coupled with reduced-order modeling techniques for future research.
Il flusso magnetoidrodinamico (MHD) del piombo-litio liquido sotto l’influenza di campi magnetici è fondamentale per i sistemi di raffreddamento dei reattori a fusione. Questo studio presenta un’indagine numerica sistematica delle caratteristiche del flusso MHD utilizzando il codice numerico magnetoHDFoam, con particolare attenzione all’influenza della direzione e dell’intensità del campo magnetico. È stata considerata una geometria ben nota in fluido dinamica, il BFS (backward-facing step), ovvero un canale con uno scalino. A questa geometria sono stati applicati sia campi magnetici perpendicolari che paralleli. I risultati indicano che un campo magnetico verticale sopprime significativamente la velocità complessiva del flusso, mentre un campo magnetico parallelo favorisce un flusso confinato concentrato nella regione superiore del condotto e induce una transizione dal regime turbolento a quello laminare. In entrambe le configurazioni di campo magnetico, sono state osservate instabilità del flusso a velocità elevate. Il tempo necessario affinché il sistema raggiunga lo stato stazionario mostra comportamenti diversi a seconda dell’orientamento del campo: un andamento monotono sotto campi perpendicolari e un comportamento simile a una parabola sotto campi paralleli, entrambi influenzati dall’intensità del campo magnetico e dal numero di Reynolds. Per approfondire il meccanismo di stabilizzazione dei campi magnetici nel flusso orizzontale all’interno di condotti, lo studio confronta profili di velocità in ingresso uniformi e parabolici sotto entrambe le direzioni del campo magnetico. I risultati mostrano che le condizioni al contorno in ingresso hanno un impatto significativo sulla distribuzione della velocità, sulla struttura dello strato limite e sulla stabilizzazione del flusso. Sotto l’influenza di un campo magnetico parallelo, il profilo di velocità parabolico in ingresso contrasta l’effetto di regolazione del campo magnetico sulla distribuzione del flusso, indebolendone o addirittura annullandone l’efficacia. Inoltre, l’interazione tra le condizioni in ingresso, la direzione e l’intensità del campo magnetico influenza ulteriormente la scala temporale della stabilizzazione del flusso. Questi risultati offrono nuove prospettive sul controllo dei flussi MHD e forniscono indicazioni ingegneristiche utili per la progettazione e l’ottimizzazione delle configurazioni di campo magnetico nei sistemi blanket dei reattori a fusione.
Analysis of liquid mental magnetohydrodynamic (MHD) flows behavior under various magnetic fields
Wang, Heliang
2024/2025
Abstract
Magnetic confinement fusion is a promising technology that uses intense magnetic fields to confine high-temperature plasma and achieve controlled thermonuclear energy release. In this context, magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids in the presence of magnetic fields, such as liquid lead–lithium circulating in the cooling blanket of fusion reactors. In this work, the new solver magnetoHDFoam, developed at Politecnico di Milano, is employed to investigate MHD behavior in simplified geometries, with particular attention to the influence of magnetic field orientation and intensity. Since the solver is relatively recent, an additional objective is to assess its performance in canonical configurations, representing a preliminary step toward more complex reactor applications. The thesis addresses two main tasks. First, the effect of magnetic field orientation (parallel and perpendicular to the flow) and intensity on flow behavior in a backward-facing step (BFS) geometry is analyzed. Subsequently, the regulation of liquid metal flow in a horizontal pipe is studied, comparing constant and parabolic inlet velocity profiles in terms of flow structure, boundary layer development, and stability. Complementing the simulations, Dynamic Mode Decomposition (DMD) is applied to extract coherent spatiotemporal structures from unsteady MHD fields. By identifying the dominant modes of velocity and pressure evolution, DMD provides a reduced-order description of the dynamics and demonstrates its potential as an efficient predictive tool. The results show that the flow regime, velocity distribution, and time required to reach steady state vary significantly with magnetic field intensity and orientation, geometry, and boundary conditions. DMD analysis confirms that a limited number of modes is sufficient to capture the essential dynamics, enabling compact yet accurate reconstructions. These results improve the understanding of magnetic field effects on liquid metal flows and validate the capabilities of the magnetoHDFoam solver. While based on idealized geometries, the study highlights the importance of detailed flow analysis in fusion blankets and supports the development of accurate solvers coupled with reduced-order modeling techniques for future research.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_HeliangWang_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
7.42 MB
Formato
Adobe PDF
|
7.42 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_HeliangWang_Executive_Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
4.56 MB
Formato
Adobe PDF
|
4.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/242917