Point-of-care testing technologies are considered a crucial tool that enables accessible, decentralized healthcare. Their potential to deliver timely and actionable information makes them especially valuable in the contexts of early diagnosis and chronic disease monitoring. However, translating sensing technologies from the laboratory to the clinic remains challenging, requiring not only analytical accuracy but also robustness, simplicity, and system-level integration. This doctoral thesis presents two complementary approaches to advancing point-of-care diagnostics through innovative sensing strategies and data-driven analysis. The first focuses on diabetes monitoring via glycated albumin, a mid-term biomarker offering insight into glycemic control over 2–3 weeks. To address the limitations of current assays, in particular their reliance on enzymatic digestion and multi-step workflows, a single-step electrochemical sensor was developed using a redox probe-labeled aptamer capable of binding both glycated and non-glycated albumin. The method exploits the distinct binding kinetics of the two analytes: a novel analytical parameter, termed evolution, captures signal changes over time and enables accurate determination of clinically relevant glycation ratios (10%, 20%, and 40%) across physiological albumin concentrations, without the need for enzymatic steps or multiple assays. The second part of the work targets early disease detection through non-invasive analysis of volatile organic compounds in exhaled breath. A temperature-modulated electronic nose was developed using commercially available metal oxide semiconductor sensors. Temperature modulation, in particular a square–triangular waveform pattern, was shown to significantly enhance the sensors selectivity and sensitivity when exposed to individual analytes such as methane, carbon dioxide, and butanone. Building on this foundation, the system was then applied to ternary mixtures of clinically relevant organic compounds: acetone, isopropanol, and toluene. Two machine learning approaches were implemented to classify and quantify components in the mixtures. A model trained on all mixture classes achieved 91% accuracy. A re-mapping strategy based on single-analyte data reached 84% accuracy, demonstrating how the system can leverage what it learns from simple conditions to understand complex ones. The work addresses the design of point-of-care platforms for disease monitoring and early diagnosis, contributing to the development of compact, reliable, and versatile diagnostic tools ready for real-world application.
Le tecnologie di diagnostica point-of-care rappresentano uno strumento fondamentale per rendere l’assistenza sanitaria più accessibile e decentralizzata. La loro capacità di fornire informazioni tempestive e utili le rende particolarmente preziose nei contesti di diagnosi precoce e monitoraggio delle malattie croniche. Tuttavia, il trasferimento di tecnologie di diagnosi e rilevamento da un ambiente di laboratorio alla pratica clinica resta complesso, poiché sono richieste non solo un’elevata accuratezza analitica, ma anche robustezza, semplicità d’uso e integrazione a livello di sistema. Questa tesi di dottorato presenta due approcci complementari per avanzare la diagnostica point-of-care, basati su strategie innovative di sensing e analisi dati. La prima parte è dedicata al monitoraggio del diabete tramite l’albumina glicata, un biomarcatore di medio periodo che riflette il controllo glicemico in un arco di 2–3 settimane. Per superare i limiti dei saggi attuali – che richiedono digestione enzimatica e procedure a più fasi – è stato sviluppato un sensore elettrochimico one-step, basato su un aptamero marcato con sonda redox in grado di legare sia l’albumina glicata che quella non glicata. Il metodo sfrutta le diverse cinetiche di legame dei due analiti: un nuovo parametro, denominato evolution, consente di seguire le variazioni del segnale nel tempo e di determinare con precisione rapporti di glicazione clinicamente rilevanti (10%, 20% e 40%) su concentrazioni fisiologiche di albumina, senza necessità di passaggi enzimatici o saggi multipli. La seconda parte del lavoro si concentra invece sulla diagnosi precoce attraverso l’analisi non invasiva di composti volatili organici presenti nel respiro esalato. A questo scopo è stato sviluppato un naso elettronico a modulazione di temperatura basato su sensori commerciali a ossido di metallo. La modulazione di temperatura, in particolare con uno schema a onde quadre-triangolari, ha dimostrato di aumentare la selettività e la sensibilità dei sensori nei confronti di singoli analiti come metano, anidride carbonica e butanone. Su queste basi, il sistema è stato applicato anche a miscele ternarie di composti clinicamente rilevanti: acetone, isopropanolo e toluene. Sono stati adottati due approcci di machine learning per classificare e quantificare i componenti delle miscele. Un modello addestrato su tutte le combinazioni delle miscele ha raggiunto un’accuratezza del 91%, mentre una strategia di rimappatura a partire dai dati dei singoli analiti ha ottenuto un’accuratezza dell’84%, mostrando come il sistema possa trasferire ciò che apprende in condizioni semplici a scenari più complessi. Nel complesso, il lavoro affronta la progettazione di piattaforme point-of-care per il monitoraggio e la diagnosi precoce, contribuendo allo sviluppo di strumenti diagnostici compatti, affidabili e versatili, pronti ad essere adottati nella pratica clinica.
Early detection and disease monitoring: technical challenges and clinical applications of point-of-care (bio)sensor technologies
Rescalli, Andrea
2024/2025
Abstract
Point-of-care testing technologies are considered a crucial tool that enables accessible, decentralized healthcare. Their potential to deliver timely and actionable information makes them especially valuable in the contexts of early diagnosis and chronic disease monitoring. However, translating sensing technologies from the laboratory to the clinic remains challenging, requiring not only analytical accuracy but also robustness, simplicity, and system-level integration. This doctoral thesis presents two complementary approaches to advancing point-of-care diagnostics through innovative sensing strategies and data-driven analysis. The first focuses on diabetes monitoring via glycated albumin, a mid-term biomarker offering insight into glycemic control over 2–3 weeks. To address the limitations of current assays, in particular their reliance on enzymatic digestion and multi-step workflows, a single-step electrochemical sensor was developed using a redox probe-labeled aptamer capable of binding both glycated and non-glycated albumin. The method exploits the distinct binding kinetics of the two analytes: a novel analytical parameter, termed evolution, captures signal changes over time and enables accurate determination of clinically relevant glycation ratios (10%, 20%, and 40%) across physiological albumin concentrations, without the need for enzymatic steps or multiple assays. The second part of the work targets early disease detection through non-invasive analysis of volatile organic compounds in exhaled breath. A temperature-modulated electronic nose was developed using commercially available metal oxide semiconductor sensors. Temperature modulation, in particular a square–triangular waveform pattern, was shown to significantly enhance the sensors selectivity and sensitivity when exposed to individual analytes such as methane, carbon dioxide, and butanone. Building on this foundation, the system was then applied to ternary mixtures of clinically relevant organic compounds: acetone, isopropanol, and toluene. Two machine learning approaches were implemented to classify and quantify components in the mixtures. A model trained on all mixture classes achieved 91% accuracy. A re-mapping strategy based on single-analyte data reached 84% accuracy, demonstrating how the system can leverage what it learns from simple conditions to understand complex ones. The work addresses the design of point-of-care platforms for disease monitoring and early diagnosis, contributing to the development of compact, reliable, and versatile diagnostic tools ready for real-world application.| File | Dimensione | Formato | |
|---|---|---|---|
|
Andrea_Rescalli___PhD_Thesis.pdf
non accessibile
Dimensione
23.44 MB
Formato
Adobe PDF
|
23.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/242957