This thesis develops and validates a time-domain diffuse Raman spectroscopy (TD-DIRS) system for non-invasive molecular sensing in highly scattering media. The motivation is to recover Raman signatures from subsurface layers, beyond the reach of surface-based Raman, by exploiting diffuse Raman. We design an optical architecture that uses Besselring illumination with coaxial collection to suppress superficial/Rayleigh contributions and favor diffuse Raman photons. Collected light is coupled into a 7-core fiber, dispersed by a Princeton LS785 spectrometer, and detected by a LINCam Red detector, enabling simultaneous temporal-spectral mapping. Two detector strategies (LINCam vs SiPM array) are compared; the LINCam configuration is adopted due to excessive aberrations and interchannel cross-talk in the SiPM approach. The system calibration delivers a linear pixel wavelength map over 800-860 nm (R2 = 0.995) and a central band spectral FW HM = 2.3nm. The temporal response of the instrument is wavelength independent at 99 ± 8ps, which supports time-uniform gating throughout the band. Launch optics provide an 8.2mm illumination ring with high throughput; combined with spectrograph efficiency and detector quantum efficiency, the measured diffuse Raman throughput is 6%. In phantoms, we demonstrate the detection of diffuse Raman of marble (main peak at 1085 cm−1 in a single layer and through a silicone overlayer. The marble peak remains visible for thin or weakly scattering silicone (5 mm, µs = 5mm−1 ), and vanishes for thick silicone and high scattering (20 mm, µs = 15mm−1 ), in agreement with diffuse transport expectations. Time-gated maps show silicone bands arriving earlier than the marble peak, confirming depth sensitivity in the diffuse regime. In vivo hand measurement is dominated by fluorescence, highlighting the need for stronger fluorescence rejection for biological tissue. Overall, the results establish TD-DIRS as a viable route to depth-resolved diffuse Raman sensing, quantify its current limits, and indicate upgrade paths towards measurements in more fluorescent samples
Questa tesi sviluppa e valida un sistema di spettroscopia Raman diffusa nel dominio del tempo (TD-DIRS) per il sensing molecolare non invasivo in mezzi diffondenti. L’obiettivo è ottenere le firme Raman da strati sottostanti, oltre la portata del Raman convenzionale, sfruttando il Raman diffuso. È stata progettata un’architettura ottica con illuminazione ad anello di Bessel e raccolta coassiale, per sopprimere contributi superficiali/Rayleigh e favorire i fotoni Raman diffusi. La luce di raccolta è accoppiata in una fibra a 7 core, dispersa da uno spettrometro Princeton LS785 e rivelata da una camera LINCam Red, consentendo mappatura simultanea tempo-spettro. Sono state confrontate due strategie di rivelazione (LINCam vs array SiPM); è stata scelta la LINCam per le eccessive aberrazioni e il cross-talk tra i SiPM. La calibrazione fornisce una mappa lineare pixel-lunghezza d’onda tra 800–860 nm (R2 = 0.995) e una risoluzione spettrale centrale FW HM = 2.3 nm. La risposta temporale è indipendente dalla lunghezza d’onda (99 ± 8 ps), permettendo gating uniforme su tutta la banda. L’ottica di lancio genera un anello di 8.2 mm con alta efficienza; combinata con spettrografo e rivelatore, la trasmittanza Raman diffusa è del 6%. Su materiali noti, è stata dimostrata la rivelazione del Raman diffuso del marmo (picco principale a 1085 cm−1 ) sia in singolo strato sia attraverso silicone. Il picco resta visibile per silicone sottile (5 mm, µs = 5 mm−1 ) e scompare per spessori maggiori (20 mm, µs = 15 mm−1 ), in accordo con la teoria del trasporto diffusivo. Le mappe time-gated mostrano le bande del silicone più precoci del picco del marmo, confermando la sensibilità in profondità. Nelle misure in vivo sulla mano prevale invece la fluorescenza, evidenziando la necessità di maggiore reiezione nei tessuti biologici. Nel complesso, i risultati dimostrano la fattibilità del TD-DIRS per misure Raman diffuse risolte in profondità che ne quantificano i limiti e suggeriscono sviluppi rispetto a campioni fluorescenti
Enhanced light-harvesting and time-resolved detection in diffuse Raman spectroscopy
Ronchi, Gianluca
2024/2025
Abstract
This thesis develops and validates a time-domain diffuse Raman spectroscopy (TD-DIRS) system for non-invasive molecular sensing in highly scattering media. The motivation is to recover Raman signatures from subsurface layers, beyond the reach of surface-based Raman, by exploiting diffuse Raman. We design an optical architecture that uses Besselring illumination with coaxial collection to suppress superficial/Rayleigh contributions and favor diffuse Raman photons. Collected light is coupled into a 7-core fiber, dispersed by a Princeton LS785 spectrometer, and detected by a LINCam Red detector, enabling simultaneous temporal-spectral mapping. Two detector strategies (LINCam vs SiPM array) are compared; the LINCam configuration is adopted due to excessive aberrations and interchannel cross-talk in the SiPM approach. The system calibration delivers a linear pixel wavelength map over 800-860 nm (R2 = 0.995) and a central band spectral FW HM = 2.3nm. The temporal response of the instrument is wavelength independent at 99 ± 8ps, which supports time-uniform gating throughout the band. Launch optics provide an 8.2mm illumination ring with high throughput; combined with spectrograph efficiency and detector quantum efficiency, the measured diffuse Raman throughput is 6%. In phantoms, we demonstrate the detection of diffuse Raman of marble (main peak at 1085 cm−1 in a single layer and through a silicone overlayer. The marble peak remains visible for thin or weakly scattering silicone (5 mm, µs = 5mm−1 ), and vanishes for thick silicone and high scattering (20 mm, µs = 15mm−1 ), in agreement with diffuse transport expectations. Time-gated maps show silicone bands arriving earlier than the marble peak, confirming depth sensitivity in the diffuse regime. In vivo hand measurement is dominated by fluorescence, highlighting the need for stronger fluorescence rejection for biological tissue. Overall, the results establish TD-DIRS as a viable route to depth-resolved diffuse Raman sensing, quantify its current limits, and indicate upgrade paths towards measurements in more fluorescent samples| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Ronchi_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
7.94 MB
Formato
Adobe PDF
|
7.94 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Ronchi_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: testo executive abstract
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243025