This research provides an in-depth investigation into the mechanical recycling behavior of two distinct glass fiber reinforced polymer (GFRP) composites: end-of-life wind turbine blade material (GFRP-Epoxy) and industrial scrap Bulk Molding Compound (BMC-Polyester) from circuit breaker manufacturing, focusing on a two-stage shredding process. The study aims to understand how intrinsic material properties and process parameters influence fragmentation and energy requirements during secondary shredding. A systematic experimental approach was employed using a laboratory-scale secondary shredder (cutting mill) operating under varying parameters: three rotor speeds ( 500 rpm , 1500 rpm , 2500 rpm ) and four screen sizes (1 mm , 2 mm , 4 mm , 10 mm ). The feedstock for these experiments was pre-processed material obtained from a laboratory-scale primary shredder. Key performance indicators measured after the secondary shredding stage included output particle size distribution (PSD) and specific energy consumption (SEC). The wind turbine blade material, characterized by its high glass fiber content (approx. 60 – 65 % wt ) and continuous fiber reinforcement, exhibited significantly different fragmen- tation behavior during secondary shredding compared to the BMC, which contains lower levels of chopped glass fibers (approx. 25 – 30 % wt ) and inorganic fillers. Furthermore, the wind turbine material required substantially higher specific energy for secondary comminution, ranging from 0.07 – 0.41 kW h/kg, compared to the BMC material (0.05 – 0.24 kW h/kg) across the tested conditions. Particle size analysis of the secondary shredder output revealed that, under identical processing conditions, the wind turbine material consistently produced coarser recyclate (D50 range 1.7 – 4.8 mm ) than the BMC (D50 range 0.8 – 3.9 mm ). Material type, rotor speed, and screen size were all statistically significant factors affecting PSD and SEC, with significant interaction effects observed between them, indicating that secondary shredding optimization must be material-specific. These findings provide critical quantitative data on the secondary mechanical processing of dissimilar GFRP materials. The results are valuable for designing multi-stage recycling processes aligned with circular economy principles, optimizing energy usage in fine grinding steps, predicting final recyclate quality to meet demand-driven specifications, and informing downstream applications for high-value reuse, contributing to more sustainable end-of-life management strategies for composite waste.
La presente tesi offre un’analisi dettagliata del comportamento nel riciclaggio meccanico di due distinti compositi polimerici rinforzati con fibra di vetro (GFRP): materiale prove- niente da pale eoliche a fine vita (GFRP-Epossidico) e scarti industriali di Bulk Molding Compound (BMC-Poliestere) derivanti dalla produzione di interruttori, con un focus su un processo di frantumazione a due stadi. L’obiettivo dello studio è comprendere come le proprietà intrinseche dei materiali e i parametri di processo influenzino la frammentazione e il fabbisogno energetico durante la fase di triturazione secondaria. È stato adottato un approccio sperimentale sistematico, impiegando un trituratore secondario su scala di laboratorio operante a parametri variabili: tre velocità del rotore (500 rpm, 1500 rpm, 2500 rpm) e quattro dimensioni della griglia (1 mm, 2 mm, 4 mm, 10 mm). Il materiale di partenza per questi esperimenti consisteva in un pre-lavorato ottenuto da un trituratore primario. Gli indicatori chiave di prestazione, misurati dopo la triturazione secondaria, hanno incluso la distribuzione granulometrica (PSD) del prodotto in uscita e il consumo energetico specifico (SEC). Il materiale delle pale eoliche, caratterizzato da un elevato contenuto di fibra di vetro (circa 60 – 65 % wt), ha mostrato un comportamento di frammentazione significativa- mente diverso rispetto al BMC, che contiene un minor quantitativo di fibre di vetro (circa 25 – 30 % wt). Inoltre, il materiale delle pale eoliche ha richiesto un’energia specifica per la comminuzione notevolmente superiore, compresa tra 0.07 – 0.41 kW h/kg, rispetto al materiale BMC (0.05 – 0.24 kW h/kg) in tutte le condizioni testate. L’analisi granulomet- rica del prodotto in uscita ha rivelato che, a parità di condizioni di processo, il materiale delle pale eoliche ha generato costantemente un riciclato più grossolano (intervallo D50 1.7 – 4.8 mm) in confronto al BMC (intervallo D50 0.8 – 3.9 mm). Il tipo di materiale, la velocità del rotore e la dimensione della griglia sono risultati tutti fattori statisticamente significativi nell’influenzare la PSD e il SEC. Sono stati inoltre osservati importanti effetti di interazione tra questi fattori, indicando che l’ottimizzazione del processo di triturazione secondaria debba essere specifica per ciascun materiale. Questi risultati forniscono dati quantitativi fondamentali sul trattamento meccanico sec- ondario di materiali GFRP differenti. Essi sono preziosi per la progettazione di processi di riciclo multistadio in linea con i principi dell’economia circolare, per l’ottimizzazione del consumo energetico nelle fasi di macinazione fine, per la previsione della qualità del riciclato al fine di soddisfare specifiche guidate dalla domanda e per l’identificazione di applicazioni a valle che ne consentano un riutilizzo ad alto valore, contribuendo così a strategie più sostenibili per la gestione del fine vita dei rifiuti compositi.
Mechanical recycling of glass fiber reinforced composites: effects of material composition and process parameters on particle size distribution and energy consumption
Rossin, Mario
2024/2025
Abstract
This research provides an in-depth investigation into the mechanical recycling behavior of two distinct glass fiber reinforced polymer (GFRP) composites: end-of-life wind turbine blade material (GFRP-Epoxy) and industrial scrap Bulk Molding Compound (BMC-Polyester) from circuit breaker manufacturing, focusing on a two-stage shredding process. The study aims to understand how intrinsic material properties and process parameters influence fragmentation and energy requirements during secondary shredding. A systematic experimental approach was employed using a laboratory-scale secondary shredder (cutting mill) operating under varying parameters: three rotor speeds ( 500 rpm , 1500 rpm , 2500 rpm ) and four screen sizes (1 mm , 2 mm , 4 mm , 10 mm ). The feedstock for these experiments was pre-processed material obtained from a laboratory-scale primary shredder. Key performance indicators measured after the secondary shredding stage included output particle size distribution (PSD) and specific energy consumption (SEC). The wind turbine blade material, characterized by its high glass fiber content (approx. 60 – 65 % wt ) and continuous fiber reinforcement, exhibited significantly different fragmen- tation behavior during secondary shredding compared to the BMC, which contains lower levels of chopped glass fibers (approx. 25 – 30 % wt ) and inorganic fillers. Furthermore, the wind turbine material required substantially higher specific energy for secondary comminution, ranging from 0.07 – 0.41 kW h/kg, compared to the BMC material (0.05 – 0.24 kW h/kg) across the tested conditions. Particle size analysis of the secondary shredder output revealed that, under identical processing conditions, the wind turbine material consistently produced coarser recyclate (D50 range 1.7 – 4.8 mm ) than the BMC (D50 range 0.8 – 3.9 mm ). Material type, rotor speed, and screen size were all statistically significant factors affecting PSD and SEC, with significant interaction effects observed between them, indicating that secondary shredding optimization must be material-specific. These findings provide critical quantitative data on the secondary mechanical processing of dissimilar GFRP materials. The results are valuable for designing multi-stage recycling processes aligned with circular economy principles, optimizing energy usage in fine grinding steps, predicting final recyclate quality to meet demand-driven specifications, and informing downstream applications for high-value reuse, contributing to more sustainable end-of-life management strategies for composite waste.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Rossin.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
18.82 MB
Formato
Adobe PDF
|
18.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243083