The integrated photonic chip has become a key platform for modern optical communication, signal processing, sensing, and quantum technologies, owing to its wide bandwidth, low loss, and compatibility with CMOS technology. Among the various components of photonic integrated circuits (PICs), the waveguide grating coupler plays a central role in efficiently coupling optical signals between on-chip waveguides and external optical fibers. Its coupling efficiency and mode matching directly affect the overall performance of the photonic chip. In the early stage of integrated photonics, uniform grating couplers were widely studied due to their simple structure and ease of fabrication. However, these devices typically produced exponentially decaying emission profiles that deviated from the Gaussian distribution of standard single-mode fibers, leading to limited coupling efficiency and poor tolerance to fabrication imperfections. With the development of advanced micro- and nano-fabrication technologies, more sophisticated grating designs have been proposed to improve beam shaping, bandwidth, and manufacturability. Based on the silicon-on-insulator (SOI) platform, this work focuses on the design and optimization of Gaussian-output grating couplers. Numerical simulations using the finite-difference time-domain (FDTD) method are employed to analyze uniform grating couplers and explore apodization strategies, including linear, quadratic, and exponential variations of the duty cycle. The complex-field overlap and mean square error metrics are introduced as optimization objectives to evaluate both amplitude and phase matching between the emitted field and the Gaussian fiber mode. The simulation results demonstrate that a second-order apodized grating coupler achieves an overlap efficiency above 91% in 3D validation. Furthermore, tolerance studies reveal that the optimized design maintains robust performance against duty cycle fluctuations, etch depth variations, and random fabrication errors, though it shows higher sensitivity to silicon thickness deviations. To ensure compatibility with standard UV lithography, fabrication-aware design constraints are also introduced. In addition to the SOI platform, this thesis extends the study to silicon nitride (SiN) waveguides, which offer ultra-low propagation loss and broad transparency windows. Both suspended and bus-type SiN waveguides are analyzed under different cladding configurations. Their modal properties, bending performance, and coupling efficiency with various fibers (SMF-28, UHNA1, and UHNA3) are systematically compared, providing practical guidelines for low-loss photonic integration. This research demonstrates that Gaussian-apodized grating couplers not only enhance fiber-to-chip coupling efficiency but also improve fabrication tolerance, while SiN waveguides provide complementary solutions for low-loss routing and hybrid integration. Together, these results contribute to the development of robust and efficient coupling strategies for next-generation photonic integrated circuits.
Grazie alla sua ampia larghezza di banda, alle basse perdite e alla compatibilità con la tecnologia CMOS, il chip fotonico integrato è diventato una piattaforma fondamentale per le moderne applicazioni di comunicazione ottica, elaborazione dei segnali, sensing e tecnologie quantistiche. Tra i vari componenti dei circuiti fotonici integrati (PIC), l’accoppiatore reticolare a guida d’onda svolge un ruolo centrale nel collegare in modo efficiente i segnali ottici tra le guide d’onda on-chip e le fibre ottiche esterne. La sua efficienza di accoppiamento e la corrispondenza dei modi influenzano direttamente le prestazioni complessive del chip fotonico. Nella fase iniziale della fotonica integrata, gli accoppiatori reticolari uniformi sono stati ampiamente studiati per la loro struttura semplice e la facilità di fabbricazione. Tuttavia, questi dispositivi generavano tipicamente profili di emissione a decadimento esponenziale che si discostavano dalla distribuzione gaussiana delle fibre monomodali standard, causando un’efficienza di accoppiamento limitata e una scarsa tolleranza alle imperfezioni di fabbricazione. Con lo sviluppo delle tecnologie avanzate di micro- e nano-fabbricazione, sono stati proposti progetti di reticoli più sofisticati, con l’obiettivo di migliorare la sagomatura del fascio, la larghezza di banda e la producibilità. Su piattaforma silicon-on-insulator (SOI), questo lavoro si concentra sulla progettazione e ottimizzazione di accoppiatori reticolari a uscita gaussiana. Simulazioni numeriche basate sul metodo delle differenze finite nel dominio del tempo (FDTD) sono impiegate per analizzare accoppiatori reticolari uniformi ed esplorare strategie di apodizzazione, incluse variazioni lineari, quadratiche ed esponenziali del duty cycle. Le metriche di sovrapposizione del campo complesso e di errore quadratico medio vengono introdotte come obiettivi di ottimizzazione per valutare sia l’ampiezza sia la fase del campo emesso rispetto al modo gaussiano della fibra. I risultati delle simulazioni dimostrano che un accoppiatore reticolare apodizzato di secondo ordine raggiunge un’efficienza di sovrapposizione superiore a 0,97 nell’analisi 2D e oltre 0,91 nella validazione 3D. Inoltre, gli studi di tolleranza rivelano che il progetto ottimizzato mantiene prestazioni robuste rispetto a variazioni del duty cycle, della profondità di incisione e a errori casuali di fabbricazione, sebbene mostri una maggiore sensibilità alle deviazioni dello spessore del silicio. Per garantire la compatibilità con la litografia UV standard, vengono introdotti anche vincoli di progetto orientati alla fabbricazione. Oltre alla piattaforma SOI, questa tesi estende lo studio alle guide d’onda in nitruro di silicio (SiN), che offrono perdite di propagazione ultra-basse e un’ampia finestra di trasparenza. Sono analizzate sia guide sospese sia guide di tipo bus con diverse configurazioni di cladding. Le loro proprietà modali, le prestazioni in curvatura e l’efficienza di accoppiamento con varie fibre (SMF-28, UHNA1 e UHNA3) sono confrontate in modo sistematico, fornendo linee guida pratiche per l’integrazione fotonica a basse perdite. Questa ricerca dimostra che gli accoppiatori reticolari apodizzati gaussiani non solo migliorano l’efficienza di accoppiamento fibra-chip, ma aumentano anche la tolleranza di fabbricazione, mentre le guide d’onda in SiN forniscono soluzioni complementari per instradamenti a basse perdite e integrazione ibrida. Insieme, questi risultati contribuiscono allo sviluppo di strategie di accoppiamento robuste ed efficienti per i circuiti fotonici integrati di nuova generazione.
Design of Gaussian beam grating couplers for integrated optical waveguides
SUI, XINMEI
2024/2025
Abstract
The integrated photonic chip has become a key platform for modern optical communication, signal processing, sensing, and quantum technologies, owing to its wide bandwidth, low loss, and compatibility with CMOS technology. Among the various components of photonic integrated circuits (PICs), the waveguide grating coupler plays a central role in efficiently coupling optical signals between on-chip waveguides and external optical fibers. Its coupling efficiency and mode matching directly affect the overall performance of the photonic chip. In the early stage of integrated photonics, uniform grating couplers were widely studied due to their simple structure and ease of fabrication. However, these devices typically produced exponentially decaying emission profiles that deviated from the Gaussian distribution of standard single-mode fibers, leading to limited coupling efficiency and poor tolerance to fabrication imperfections. With the development of advanced micro- and nano-fabrication technologies, more sophisticated grating designs have been proposed to improve beam shaping, bandwidth, and manufacturability. Based on the silicon-on-insulator (SOI) platform, this work focuses on the design and optimization of Gaussian-output grating couplers. Numerical simulations using the finite-difference time-domain (FDTD) method are employed to analyze uniform grating couplers and explore apodization strategies, including linear, quadratic, and exponential variations of the duty cycle. The complex-field overlap and mean square error metrics are introduced as optimization objectives to evaluate both amplitude and phase matching between the emitted field and the Gaussian fiber mode. The simulation results demonstrate that a second-order apodized grating coupler achieves an overlap efficiency above 91% in 3D validation. Furthermore, tolerance studies reveal that the optimized design maintains robust performance against duty cycle fluctuations, etch depth variations, and random fabrication errors, though it shows higher sensitivity to silicon thickness deviations. To ensure compatibility with standard UV lithography, fabrication-aware design constraints are also introduced. In addition to the SOI platform, this thesis extends the study to silicon nitride (SiN) waveguides, which offer ultra-low propagation loss and broad transparency windows. Both suspended and bus-type SiN waveguides are analyzed under different cladding configurations. Their modal properties, bending performance, and coupling efficiency with various fibers (SMF-28, UHNA1, and UHNA3) are systematically compared, providing practical guidelines for low-loss photonic integration. This research demonstrates that Gaussian-apodized grating couplers not only enhance fiber-to-chip coupling efficiency but also improve fabrication tolerance, while SiN waveguides provide complementary solutions for low-loss routing and hybrid integration. Together, these results contribute to the development of robust and efficient coupling strategies for next-generation photonic integrated circuits.| File | Dimensione | Formato | |
|---|---|---|---|
|
Graduation_thesis_XinmeiSui.pdf
accessibile in internet per tutti
Dimensione
16.41 MB
Formato
Adobe PDF
|
16.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243119