Venture distinctiveness has so far been studied mainly through a narrow, product-centred perspective, commonly referred to as uniqueness of value proposition, leaving only fragmentary clues about the other perspectives that define it. Through a systematic literature review, this dissertation advances a broader conceptualization and operationalisation of distinctiveness. It identifies the business model as the most suitable construct to capture the integrated configuration of how firms create, deliver, and capture value in distinctive ways through the integration of three perspectives: the narrow value proposition, the supply side and the demand side. This novel concept of business model distinctiveness is then examined as a determinant of equity crowdfunding outcomes and as a potential moderator of gender effects. An additional review of equity crowdfunding success determinants, with emphasis on gender dynamics, provides the foundation for the empirical analysis. Using a dataset of 1,175 campaigns launched on Italian crowdfunding platforms between 2014 and 2024, Artificial Intelligence methods were employed, combining Large Language Models to extract business model canvases, and Natural Language Processing techniques to compute distinctiveness scores. The findings show that business model distinctiveness has a negative and statistically significant effect on both financing success and investor participation, suggesting that excessive differentiation increases perceived risk and reduces comparability. Supply-side distinctiveness presents a similar effect on financing success, but not on investor participation. Finally, female-majority entrepreneurial teams do not moderate the relationship with distinctiveness. The study contributes by introducing business model distinctiveness as a novel determinant of financing outcomes, demonstrating an integrated AI-enabled LLM–NLP approach to its measurement, and uncovering its nuanced role in equity crowdfunding.
L’unicità aziendale è stata finora studiata principalmente attraverso una visione ristretta e incentrata sul prodotto, comunemente definita come unicità della value proposition, lasciando solo indizi frammentari riguardo alle altre dimensioni che la definiscono. Questa tesi, tramite una literature review sistematica, propone una concettualizzazione e un’operazionalizzazione più ampie dell’unicità, individuando nel business model il costrutto più adatto a cogliere la configurazione integrata di come le imprese creano, distribuiscono e catturano valore in modo distintivo attraverso l’integrazione di tre prospettive: la ristretta value proposition, il lato supply e il lato demand. Il nuovo concetto di unicità del business model viene analizzato come un determinante degli esiti di finanziamento nell’equity crowdfunding e come potenziale moderatore degli effetti di genere. Un’ulteriore literature review sui determinanti del successo nell’equity crowdfunding, con particolare attenzione alle dinamiche di genere, fornisce la base per l’analisi empirica. Lo studio si basa su un dataset di 1.175 campagne lanciate su piattaforme di crowdfunding italiane tra il 2014 e il 2024. Sono stati impiegati metodi di intelligenza artificiale, combinando Large Language Models per estrarre i business model canvas e Natural Language Processing per calcolare indici di unicità. I risultati mostrano che l’unicità del business model ha un effetto negativo e statisticamente significativo sia sul successo del finanziamento sia sulla partecipazione degli investitori, suggerendo che un’eccessiva differenziazione accresce il rischio percepito e riduce la comparabilità. L’unicità del lato supply presenta un effetto simile sul successo del finanziamento, ma non sulla partecipazione degli investitori. Infine, i team imprenditoriali a maggioranza femminile non moderano la relazione con l’unicità. La ricerca contribuisce introducendo l’unicità del business model come nuovo determinante degli esiti di finanziamento, presentando un approccio IA integrato basato su LLM ed NLP per la sua misurazione ed evidenziando il suo ruolo sfaccettato nell’equity crowdfunding.
Beyond value propositions: does business model distinctiveness impact financing success? An AI-based analysis of italian equity crowdfunding
Errico, Davide;Lovato, Davide
2024/2025
Abstract
Venture distinctiveness has so far been studied mainly through a narrow, product-centred perspective, commonly referred to as uniqueness of value proposition, leaving only fragmentary clues about the other perspectives that define it. Through a systematic literature review, this dissertation advances a broader conceptualization and operationalisation of distinctiveness. It identifies the business model as the most suitable construct to capture the integrated configuration of how firms create, deliver, and capture value in distinctive ways through the integration of three perspectives: the narrow value proposition, the supply side and the demand side. This novel concept of business model distinctiveness is then examined as a determinant of equity crowdfunding outcomes and as a potential moderator of gender effects. An additional review of equity crowdfunding success determinants, with emphasis on gender dynamics, provides the foundation for the empirical analysis. Using a dataset of 1,175 campaigns launched on Italian crowdfunding platforms between 2014 and 2024, Artificial Intelligence methods were employed, combining Large Language Models to extract business model canvases, and Natural Language Processing techniques to compute distinctiveness scores. The findings show that business model distinctiveness has a negative and statistically significant effect on both financing success and investor participation, suggesting that excessive differentiation increases perceived risk and reduces comparability. Supply-side distinctiveness presents a similar effect on financing success, but not on investor participation. Finally, female-majority entrepreneurial teams do not moderate the relationship with distinctiveness. The study contributes by introducing business model distinctiveness as a novel determinant of financing outcomes, demonstrating an integrated AI-enabled LLM–NLP approach to its measurement, and uncovering its nuanced role in equity crowdfunding.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Errico_Lovato_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
16.13 MB
Formato
Adobe PDF
|
16.13 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Errico_Lovato_Executive_Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243120