Ultra-High-Molecular-Weight Polyethylene (UHMWPE) has long been considered the gold standard for tibial inserts in total knee arthroplasty (TKA) due to its mechanical strength, low friction, and biocompatibility. Despite advancements in crosslinking and post-irradiation stabilization, oxidative degradation remains a limitation, contributing to long-term implant failure. Recent studies have shown that in vivo oxidative degradation still occurs, suggesting alternative degradation pathways. One involves the diffusion of lipid species from synovial fluid into the UHMWPE matrix. Lipids diffuse particularly into amorphous regions and, by interacting with them, alter the chemical and mechanical structure over time. The combination of cyclic mechanical stress and thermal effects from daily movements may increase polymer chain mobility, accelerating oxidative reactions and loss of integrity. This thesis presents two computational model to simulate the time-dependent diffusion of lipid species into crosslinked UHMWPE under mechanical loading. Two approaches were implemented to couple stress and diffusion finite element. The first approach involves two sequential finite element analyses in Abaqus: one to simulate the mechanical stress field, and the other to model mass diffusion using a stress-dependent diffusivity. A custom MATLAB script is used to iteratively couple the two simulations by updating diffusion parameters based on the local stress state, thus reducing computational cost. This method allows more flexibility in post-processing but requires iterative data exchange between Abaqus and MATLAB. In contrast, the second approach offers a fully integrated simulation within Abaqus. This approach takes advantage of the mathematical similarity between mass diffusion and heat transfer equations, since the two formulations differ only for the variables involved. Abaqus fully coupled temperature–displacement simulation is used to model mass diffusion by treating temperature as the equivalent for concentration. The model is applied to a simplified 2D geometry representing one quarter of a symmetric experimental setup. Material properties, including diffusion coefficient (D), solubility (S) and stress-diffusion factor Kp were derived from literature and experiments and calibrated for virgin and remelted UHMWPE. Simulations predict palmitic acid accumulation and mass flux, identifying regions vulnerable to early softening or failure under high stress. These findings highlight the role of mechanical loading in lipid transport and provide a predictive framework for long-term degradation under clinically relevant conditions
Il polietililne ad altissimo peso molecolare (UHMWPE) è considerato il materiale di riferimento per gli inserti tibiali nella sostituzione totale di ginocchio grazie a elevata resistenza meccanica, basso attrito e biocompatibilità. Nonostante i progressi in crosslinking e stabilizzazione post-irraggiamento, la degradazione ossidativa persiste e contribuisce a problematiche nel lungo termine. Recenti studi indicano che l’ossidazione in vivo continua a verificarsi, suggerendo vie alternative. Una di queste riguarda la diffusione di lipidi dal liquido sinoviale nella matrice di UHMWPE. I lipidi penetrano soprattutto nelle regioni amorfe e interagendo con esse, modificano nel tempo la struttura chimico–meccanica. La combinazione di stress meccanici ciclici ed effetti termici dovuti ai movimenti quotidiani può aumentare la mobilità delle catene polimeriche, accelerando l'ossidazione e la perdita di integrità. Questa tesi presenta due modelli computazionali per simulare la diffusione tempo–dipendente di una specie lipidica chiamato Acido Palmitico in due diversi polimeri: UHMWPE GUR 1020 0kGy e UHMWPE GUR 1020 75kGy Per fare ciò sono stati implementati due modelli agli elemnti finiti di accoppiamento stress–diffusivo. Il primo usa un approccio di tipo sequenziale tra due modelli in Abaqus: una per il campo di sforzo e una per la diffusione di massa con diffusività dipendente dallo sforzo. Uno script MATLAB aggiorna iterativamente i parametri di diffusione in funzione dello stato di sforzo locale, riducendo i costi computazionali e offrendo flessibilità nel post–processing, a fronte di scambio dati tra Abaqus e MATLAB. Il secondo approccio realizza una simulazione pienamente integrata in Abaqus sfruttando l’analogia tra diffusione e trasferimento di calore, modellando la concentrazione come temperatura equivalente. I modelli ricreano una geometria 2D che riproduce il setup sperimentale sviluppato della Dartmouth Univeristy sfruttando la simmetria di quest'ultima. Le proprietà dei materiali così come dei lipidi e la loro interazione inclusi coefficiente di diffusione (D), solubilità (S) e fattore di accoppiamento stress–diffusione Kp provengono dalla letteratura e da test computazionali e sono calibrati per le due tipologie di polimero considerati. Le simulazioni prevedono lo studio dell'accumulo di acido palmitico e flusso di massa, individuando aree vulnerabili a precoce ammorbidimento o cedimento in condizioni di alto sforzo. I risultati evidenziano il ruolo del carico meccanico nel trasporto lipidico e forniscono un quadro predittivo per la degradazione a lungo termine in condizioni clinicamente rilevanti.
Finite element analysis to investigate lipid absorption in UHMWPE under mechanical loading
Paris, Isabella
2024/2025
Abstract
Ultra-High-Molecular-Weight Polyethylene (UHMWPE) has long been considered the gold standard for tibial inserts in total knee arthroplasty (TKA) due to its mechanical strength, low friction, and biocompatibility. Despite advancements in crosslinking and post-irradiation stabilization, oxidative degradation remains a limitation, contributing to long-term implant failure. Recent studies have shown that in vivo oxidative degradation still occurs, suggesting alternative degradation pathways. One involves the diffusion of lipid species from synovial fluid into the UHMWPE matrix. Lipids diffuse particularly into amorphous regions and, by interacting with them, alter the chemical and mechanical structure over time. The combination of cyclic mechanical stress and thermal effects from daily movements may increase polymer chain mobility, accelerating oxidative reactions and loss of integrity. This thesis presents two computational model to simulate the time-dependent diffusion of lipid species into crosslinked UHMWPE under mechanical loading. Two approaches were implemented to couple stress and diffusion finite element. The first approach involves two sequential finite element analyses in Abaqus: one to simulate the mechanical stress field, and the other to model mass diffusion using a stress-dependent diffusivity. A custom MATLAB script is used to iteratively couple the two simulations by updating diffusion parameters based on the local stress state, thus reducing computational cost. This method allows more flexibility in post-processing but requires iterative data exchange between Abaqus and MATLAB. In contrast, the second approach offers a fully integrated simulation within Abaqus. This approach takes advantage of the mathematical similarity between mass diffusion and heat transfer equations, since the two formulations differ only for the variables involved. Abaqus fully coupled temperature–displacement simulation is used to model mass diffusion by treating temperature as the equivalent for concentration. The model is applied to a simplified 2D geometry representing one quarter of a symmetric experimental setup. Material properties, including diffusion coefficient (D), solubility (S) and stress-diffusion factor Kp were derived from literature and experiments and calibrated for virgin and remelted UHMWPE. Simulations predict palmitic acid accumulation and mass flux, identifying regions vulnerable to early softening or failure under high stress. These findings highlight the role of mechanical loading in lipid transport and provide a predictive framework for long-term degradation under clinically relevant conditions| File | Dimensione | Formato | |
|---|---|---|---|
|
2024_10_Paris_executive summary.pdf
accessibile in internet per tutti a partire dal 27/09/2028
Descrizione: testo executive summary
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri |
|
2024_10_Paris_Tesi.pdf
accessibile in internet per tutti a partire dal 27/09/2028
Descrizione: testo tesi
Dimensione
5.98 MB
Formato
Adobe PDF
|
5.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243168