This thesis presents the design, implementation, and validation of a compact optical probe for directional motion sensing based on the principles of Self-Mixing Interferometry (SMI). Building upon a foundational system developed by a colleague, this work addresses the challenge of extracting unambiguous directional information from the raw SMI signal. The core of this project is an analog signal processing chain, which uses a practical differentiator to convert the characteristic asymmetry of the SMI fringes into polarity- coded spikes. This is followed by amplification and comparator stages that generate clean, separate digital pulse streams for forward and backward motion. The proposed circuit was first prototyped on a perfboard to validate the concept and refine component values. Subsequently, the design was translated into a compact and robust Printed Circuit Board (PCB) using surface-mount components. The probe’s performance was rigorously validated in a two-phase experimental process: functional verification of the signal chain was performed using a Digilent Analog Discovery 2, while quantitative accuracy was confirmed using a National Instruments DAQ system. The final sensor demonstrated high-resolution, reliable, and accurate directional motion detection. This thesis concludes by discussing the significant potential for this technology in applications such as robotics, non-contact metrology, and biomedical sensing.
Questa tesi presenta la progettazione, l’implementazione e la validazione di una sonda ot- tica compatta per il rilevamento direzionale del moto, basata sui principi dell’interferometria a self-mixing (SMI). Partendo da un sistema di base sviluppato da un collega, questo lavoro affronta la sfida di estrarre un’informazione direzionale univoca dal segnale SMI. Il nucleo di questa progetto è una catena di elaborazione analogica del segnale, che utilizza un derivatore per convertire la caratteristica asimmetrica delle frange SMI in im- pulsi codificati in polarità. Seguono stadi di amplificazione e comparazione che generano flussi di impulsi digitali puliti e separati per il movimento in avanti e indietro. Il circuito proposto è stato prima prototipato su una scheda millefori per validare il con- cetto e affinare i valori dei componenti. Successivamente, il progetto è stato tradotto in un Printed Circuit Board (PCB) utilizzando componenti a montaggio superficiale. Le prestazioni della sonda sono state rigorosamente validate attraverso un processo sperimen- tale in due fasi: la verifica funzionale della catena del segnale è stata eseguita utilizzando un Digilent Analog Discovery 2, mentre l’accuratezza quantitativa è stata confermata con un sistema DAQ di National Instruments. Il sensore finale ha dimostrato un rilevamento del moto direzionale ad alta risoluzione, affidabile e accurato. Questa tesi si conclude discutendo il significativo potenziale di questa tecnologia in applicazioni quali la robotica, la metrologia senza contatto e il rilevamento biomedico.
Motion detection with self-mixing interferometry
KUMAR, ROHIT
2025/2026
Abstract
This thesis presents the design, implementation, and validation of a compact optical probe for directional motion sensing based on the principles of Self-Mixing Interferometry (SMI). Building upon a foundational system developed by a colleague, this work addresses the challenge of extracting unambiguous directional information from the raw SMI signal. The core of this project is an analog signal processing chain, which uses a practical differentiator to convert the characteristic asymmetry of the SMI fringes into polarity- coded spikes. This is followed by amplification and comparator stages that generate clean, separate digital pulse streams for forward and backward motion. The proposed circuit was first prototyped on a perfboard to validate the concept and refine component values. Subsequently, the design was translated into a compact and robust Printed Circuit Board (PCB) using surface-mount components. The probe’s performance was rigorously validated in a two-phase experimental process: functional verification of the signal chain was performed using a Digilent Analog Discovery 2, while quantitative accuracy was confirmed using a National Instruments DAQ system. The final sensor demonstrated high-resolution, reliable, and accurate directional motion detection. This thesis concludes by discussing the significant potential for this technology in applications such as robotics, non-contact metrology, and biomedical sensing.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Kumar.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
4.27 MB
Formato
Adobe PDF
|
4.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243178