The application of computational modelling has become increasingly central to the study of blood damage mechanisms, particularly haemolysis, as predictive tools are essential for the development and optimisation of blood-handling medical devices. To ensure reliability, these models must be validated against experimental data obtained from well-characterised systems. In this context, the present thesis investigates the Abbott CentriMag Acute Circulatory Support System, a magnetically levitated centrifugal blood pump employed in cardiopulmonary bypass and ventricular assist procedures. Designed to optimise haemodynamic performance while limiting blood trauma, the CentriMag serves here as a benchmark device for validation purposes. The study combines numerical and experimental approaches. Computational fluid dynamics (CFD) simulations, carried out in Ansys Fluent 2021, yielded the pump’s characteristic curve together with parameters such as wall shear stress, efficiency, and a preliminary estimation of haemolytic performance through an Eulerian haemolysis model of the modified index of haemolysis (MIH). Complementary experimental work involved the design and implementation of a dedicated set-up, developed according to ASTM standards, and incorporating 3D-printed biocompatible components. This set-up enabled the acquisition of pressure and flow data to reconstruct the pump’s characteristic curve and provides a suitable configuration for future haemolysis testing. By integrating these activities, the thesis establishes a foundation for the validation of novel computational haemolysis models. The generation of reliable experimental data not only supports model development but also offers a benchmark for assessing blood damage in emerging circulatory support technologies. Ultimately, the findings contribute to a more detailed understanding of the CentriMag pump’s performance and provide insights that may guide the optimisation of blood-handling technologies in clinical applications.
L’impiego della modellazione computazionale ha un ruolo sempre più centrale nello studio dei meccanismi di danno ematico, in particolare dell’emolisi, poiché strumenti predittivi sono fondamentali per lo sviluppo e l’ottimizzazione di dispositivi medici a contatto con il sangue. Per garantire l’affidabilità dei modelli, è necessario validarli mediante dati sperimentali provenienti da sistemi accuratamente caratterizzati. In questo contesto, la presente tesi analizza un dispositivo di assistenza meccanica al circolo, l’Abbott CentriMag Acute Circulatory Support System, una pompa centrifuga a levitazione magnetica impiegata in bypass cardiopolmonare e assistenza ventricolare. Progettata per ottimizzare le prestazioni emodinamiche riducendo il trauma ematico, la CentriMag è utilizzata come riferimento ai fini della validazione. Lo studio integra approcci numerici e sperimentali. Le simulazioni di fluidodinamica computazionale (CFD), condotte con Ansys Fluent 2021, hanno fornito la curva caratteristica della pompa, parametri come lo sforzo di taglio sulle pareti, l’efficienza e una stima preliminare delle prestazioni emolitiche mediante un modello di emolisi Euleriano del "modified index of haemolysis" (MIH). L’indagine sperimentale ha previsto la realizzazione di un circuito dedicato, sviluppato secondo gli standard ASTM e con componenti biocompatibili realizzati tramite stampa 3D, consentendo l’acquisizione di dati di pressione e portata per ricostruire la curva caratteristica e costituendo una piattaforma per futuri test di emolisi. Integrando queste attività, la tesi fornisce una base per la validazione di nuovi modelli computazionali di emolisi. La disponibilità di dati sperimentali affidabili supportano lo sviluppo dei modelli e costituiscono un riferimento per valutare il danno ematico nelle tecnologie emergenti di supporto circolatorio. Infine, i risultati contribuiscono a comprendere meglio le prestazioni della CentriMag e offrono indicazioni per ottimizzare le tecnologie a contatto con il sangue in contesti clinici.
Computational fluid dynamics and experimental characterisation of the CentriMag pump
Di Franco, Emily
2024/2025
Abstract
The application of computational modelling has become increasingly central to the study of blood damage mechanisms, particularly haemolysis, as predictive tools are essential for the development and optimisation of blood-handling medical devices. To ensure reliability, these models must be validated against experimental data obtained from well-characterised systems. In this context, the present thesis investigates the Abbott CentriMag Acute Circulatory Support System, a magnetically levitated centrifugal blood pump employed in cardiopulmonary bypass and ventricular assist procedures. Designed to optimise haemodynamic performance while limiting blood trauma, the CentriMag serves here as a benchmark device for validation purposes. The study combines numerical and experimental approaches. Computational fluid dynamics (CFD) simulations, carried out in Ansys Fluent 2021, yielded the pump’s characteristic curve together with parameters such as wall shear stress, efficiency, and a preliminary estimation of haemolytic performance through an Eulerian haemolysis model of the modified index of haemolysis (MIH). Complementary experimental work involved the design and implementation of a dedicated set-up, developed according to ASTM standards, and incorporating 3D-printed biocompatible components. This set-up enabled the acquisition of pressure and flow data to reconstruct the pump’s characteristic curve and provides a suitable configuration for future haemolysis testing. By integrating these activities, the thesis establishes a foundation for the validation of novel computational haemolysis models. The generation of reliable experimental data not only supports model development but also offers a benchmark for assessing blood damage in emerging circulatory support technologies. Ultimately, the findings contribute to a more detailed understanding of the CentriMag pump’s performance and provide insights that may guide the optimisation of blood-handling technologies in clinical applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Di Franco_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
12.66 MB
Formato
Adobe PDF
|
12.66 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Di Franco_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243189