The overarching objective of this thesis is to identify the overall patterns in how European Union actions—through the Horizon 2020 (2014–2021) and Horizon Europe (2021–2027) Research & Innovation funding programmes—are addressing the risks associated with Critical Raw Materials (CRMs). To pursue this aim, through a PRISMA-inspired, project-level screening of CORDIS datasets, the research identifies and classifies funded projects that reduce CRM dependency either directly (explicitly tackling criticality) or indirectly (conferring material benefits via design, durability, process shifts, among others). Each relevant project is coded along four axes: focus (CRM, Strategic Technology, Both), materials/technologies involved (aligned with the EU’s 15 Strategic Technologies), type of implications (direct/indirect), and mitigation strategies drawn from an expanded eleven-lever framework. From 50,730 projects screened, 933 are classified as relevant to CRM mitigation (524 in Horizon 2020; 409 in Horizon Europe). The share of relevant projects rises from 1.48% to 2.67%, and the funding share nearly doubles (from 2.10% to 3.88%), with higher average European Commission contributions per project in Horizon Europe. Material priorities concentrate on Nickel, Aluminium, and Copper, with Lithium and Cobalt rising sharply; on the technology side, Li-ion Batteries dominate in both incidence and budget, with Electrolysers, Fuel Cells and Solar Photovoltaics gaining momentum, while attention to several other Strategic Technologies remains comparatively modest. Across strategies, Substitution (increasingly via product-level innovation such as new battery chemistries), Product Life Extension (notably Design for Durability), and Recycling form the prevailing mitigation triad; while system-level levers such as Stockpiling, Sufficiency, and Supply-chain transparency remain under-deployed. The discussion translates these patterns into policy implications: prioritize explicit CRM mitigation in calls; diversify beyond battery-centric materials; institutionalize design levers (durability/repairability, design for Circular Economy) and scale high-value recycling; balance primary supply with responsible permitting and circularity; advancing stockpiling through instruments external to R&I; boost traceability via digital product passports; target technology bottlenecks (e.g., PGM-free Electrolysers/Fuel Cells, CRM-light batteries); mandate standardized outcome reporting post-project; and leverage procurement to pull secondary content and durability into markets. Limitations include keyword bias, uneven project descriptions, manual screening subjectivity, and the March-2025 cutoff for Horizon Europe data. Overall, the evidence shows an EU funding trajectory that is increasingly aligned with CRM resilience—more frequent, larger, and more direct mitigation—while highlighting specific gaps to close for a robust, circular, and strategically autonomous materials base.
L’obiettivo generale di questa tesi è identificare i modelli complessivi con cui le azioni dell’Unione Europea—attraverso i programmi di finanziamento alla Ricerca e Innovazione Horizon 2020 (2014–2021) e Horizon Europe (2021–2027)—stanno affrontando i rischi associati alle Materie Prime Critiche (Critical Raw Materials, CRMs). A tale scopo, tramite uno screening a livello di progetto ispirato al metodo PRISMA dei dataset CORDIS, la ricerca individua e classifica i progetti finanziati che riducono la dipendenza dalle CRMs, sia direttamente (affrontando esplicitamente la criticità), sia indirettamente (generando benefici materiali attraverso design, durabilità, cambiamenti di processo e simili). Ogni progetto rilevante è codificato lungo quattro assi: focus (CRM, Tecnologia Strategica o entrambi), materiali/tecnologie coinvolti (in linea con le 15 Tecnologie Strategiche dell’UE), tipo di implicazioni (dirette/indirette) e strategie di mitigazione tratte da un quadro ampliato di undici leve. Dei 50.730 progetti analizzati, 933 sono classificati come rilevanti per la mitigazione delle CRMs (524 in Horizon 2020; 409 in Horizon Europe). La quota di progetti rilevanti cresce dall’1,48% al 2,67%, mentre la quota di finanziamento quasi raddoppia (dal 2,10% al 3,88%), con contributi medi della Commissione Europea più elevati per progetto in Horizon Europe. Le priorità materiali si concentrano su Nichel, Alluminio e Rame, con una crescita marcata di Litio e Cobalto; sul fronte tecnologico, le Batterie agli ioni di Litio dominano sia per incidenza sia per budget, mentre Elettrolizzatori, Celle a combustibile e Fotovoltaico solare guadagnano slancio, a fronte di un’attenzione relativamente modesta verso altre Tecnologie Strategiche. Tra le strategie, Sostituzione (sempre più a livello di innovazione di prodotto, ad esempio nuove chimiche per batterie), Estensione della vita utile (in particolare il Design per la durabilità) e Riciclo costituiscono la triade prevalente di mitigazione; mentre leve a livello di sistema come Accumulo strategico, Sufficienza e Trasparenza della catena di fornitura rimangono sotto-utilizzate. La discussione traduce questi modelli in implicazioni politiche: dare priorità alla mitigazione esplicita delle CRMs nei bandi; diversificare oltre i materiali legati alle batterie; istituzionalizzare le leve di design (durabilità/riparabilità, progettazione per l’Economia Circolare) e ampliare il riciclo ad alto valore; bilanciare l’approvvigionamento primario con autorizzazioni responsabili e circolarità; sviluppare l’accumulo strategico tramite strumenti esterni alla R&I; rafforzare la tracciabilità tramite i passaporti digitali dei prodotti; affrontare i colli di bottiglia tecnologici (es. Elettrolizzatori/Celle a combustibile senza PGM, batterie a basso contenuto di CRMs); rendere obbligatoria la rendicontazione standardizzata dei risultati post-progetto; e utilizzare gli appalti pubblici per trainare il contenuto secondario e la durabilità nei mercati. Le limitazioni includono possibili bias legati alle parole chiave, descrizioni progettuali disomogenee, soggettività nello screening manuale e il cutoff di marzo 2025 per i dati di Horizon Europe. Nel complesso, le evidenze mostrano una traiettoria di finanziamento dell’UE sempre più allineata alla resilienza delle CRMs—più frequente, più ampia e più diretta—pur evidenziando specifici gap da colmare per una base materiale robusta, circolare e strategicamente autonoma.
Mitigating critical material risks in the European Union: a systematic review of Horizon 2020 and Horizon Europe Programmes
HERNANDEZ RIVERA, JESUS PAULO
2024/2025
Abstract
The overarching objective of this thesis is to identify the overall patterns in how European Union actions—through the Horizon 2020 (2014–2021) and Horizon Europe (2021–2027) Research & Innovation funding programmes—are addressing the risks associated with Critical Raw Materials (CRMs). To pursue this aim, through a PRISMA-inspired, project-level screening of CORDIS datasets, the research identifies and classifies funded projects that reduce CRM dependency either directly (explicitly tackling criticality) or indirectly (conferring material benefits via design, durability, process shifts, among others). Each relevant project is coded along four axes: focus (CRM, Strategic Technology, Both), materials/technologies involved (aligned with the EU’s 15 Strategic Technologies), type of implications (direct/indirect), and mitigation strategies drawn from an expanded eleven-lever framework. From 50,730 projects screened, 933 are classified as relevant to CRM mitigation (524 in Horizon 2020; 409 in Horizon Europe). The share of relevant projects rises from 1.48% to 2.67%, and the funding share nearly doubles (from 2.10% to 3.88%), with higher average European Commission contributions per project in Horizon Europe. Material priorities concentrate on Nickel, Aluminium, and Copper, with Lithium and Cobalt rising sharply; on the technology side, Li-ion Batteries dominate in both incidence and budget, with Electrolysers, Fuel Cells and Solar Photovoltaics gaining momentum, while attention to several other Strategic Technologies remains comparatively modest. Across strategies, Substitution (increasingly via product-level innovation such as new battery chemistries), Product Life Extension (notably Design for Durability), and Recycling form the prevailing mitigation triad; while system-level levers such as Stockpiling, Sufficiency, and Supply-chain transparency remain under-deployed. The discussion translates these patterns into policy implications: prioritize explicit CRM mitigation in calls; diversify beyond battery-centric materials; institutionalize design levers (durability/repairability, design for Circular Economy) and scale high-value recycling; balance primary supply with responsible permitting and circularity; advancing stockpiling through instruments external to R&I; boost traceability via digital product passports; target technology bottlenecks (e.g., PGM-free Electrolysers/Fuel Cells, CRM-light batteries); mandate standardized outcome reporting post-project; and leverage procurement to pull secondary content and durability into markets. Limitations include keyword bias, uneven project descriptions, manual screening subjectivity, and the March-2025 cutoff for Horizon Europe data. Overall, the evidence shows an EU funding trajectory that is increasingly aligned with CRM resilience—more frequent, larger, and more direct mitigation—while highlighting specific gaps to close for a robust, circular, and strategically autonomous materials base.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Hernandez.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
9.65 MB
Formato
Adobe PDF
|
9.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243191