The widespread reliance on fossil-based and finite resources in the polymer manufacturing industry poses critical environmental and economic challenges, including greenhouse gases emissions, resources depletion, and waste accumulation. Transitioning toward renewable, bio-derived feedstocks is essential for developing more sustainable materials and circular production systems. Among natural alternatives, lignin, an aromatic polymer constituting the plant cell walls and largely available as a byproduct of the pulp industry, holds considerable potential for replacing fossil-based constituents in polymers and functional materials. However, its inherent structural complexity, chemical heterogeneity, and variability with respect to biomass origin and extraction processes represent major obstacles to its large-scale integration in material manufacturing. This Ph.D. thesis presents four complementary strategies to valorize lignin into advanced polymeric materials for specific high-performance applications, addressing key challenges in lignin reactivity, compatibility, and functional integration. To this end, lignins obtained by kraft, soda, and organosolv extraction processes, each characterized by distinct biomass origins and chemical structures, were considered. Kraft and soda lignins were used as partial substitutes for the novolac component in a commercial phenol-formaldehyde formulation. To enhance their reactivity, lignins were functionalized via esterification with succinic anhydride, resulting in a marked increase in carboxyl group content. This modification generally lowered the activation energy associated with the resin crosslinking process and increased crosslinking density through the formation of additional permanent bonds, enabling succinylated kraft lignin to achieve the highest incorporation levels, reaching up to 30 wt% of the novolac phase. Polyurethane thermosetting coatings with tunable properties were developed by tailoring the molar mass and hydroxyl group reactivity of organosolv lignin through fractionation and partial catalytic depolymerization, allowing its effective use as a polyol in the synthesis process. Lignin fractions with controlled molecular weights exhibited distinct behaviors, where high-molecular-weight fractions formed more rigid coatings with higher Tg, and lower-molecular-weight and depolymerized lignins enhanced hydroxyl reactivity, yielding more flexible coatings with lower Tg, establishing a clear correlation between lignin characteristics and coating performance, and enabling formulations with over 90 wt% lignin content. In the context of thermoplastics, plasma treatment using a gliding arc tornado reactor was applied to soda lignin to improve its compatibility in polypropylene/lignin blends without the need for chemical compatibilizers. Treated lignin showed a marked increase in phenoxy radicals, reduced hydroxyl content, and a more condensed structure. Consequently, blends incorporating plasma-modified lignin exhibited greater thermo-oxidative stability, increased stiffness, and significantly improved elongation at break – more than doubled at 5 wt% lignin and nearly quadrupled at 10 wt% lignin vs. blends with untreated lignin – also maintaining an excellent mechanical performance after reprocessing, with strain at break retention around 95%. In more specialized functional applications, lignin structure and chemical functionalities were exploited to enhance the performance and safety of next-generation lithium-sulfur batteries. Kraft lignin was processed into nanoparticles (~150 nm) and incorporated at 30 wt% into a crosslinked polyethylene glycol diacrylate matrix, forming a composite coating that was applied to a commercial polypropylene separator. The modified separator outperformed its unmodified counterpart by effectively preventing the undesired shuttle of lithium polysulfides – which is detrimental to battery performance – through anchoring them onto the separator surface. As a result, in flexible pouch-cell assemblies, the lignin-containing separator delivered an 80% increase in specific capacity and a 20% improvement in capacity retention compared to cells with the commercial separator. Additionally, the coating improved electrolyte wettability, promoting more efficient lithium-ion transport, and enhanced thermal and oxidative stability of the separator, reducing combustion rates and supporting safer battery operation. Overall, the results obtained in this Ph.D. highlight the versatile potential of lignin across a wide range of applications, providing valuable insights into the structure-property-function relationships in lignin-based materials and devices and contributing to narrowing the existing gap that currently hinders the full utilization of lignin in industrial contexts.
L’ampio utilizzo di risorse fossili e non rinnovabili nell’industria dei polimeri contribuisce a rilevanti criticità ambientali ed economiche, tra cui le emissioni di gas serra, l’esaurimento delle materie prime e l’accumulo di rifiuti. In questo contesto, la sostituzione delle fonti fossili con materie prime rinnovabili e bio-derivate rappresenta un passaggio strategico verso lo sviluppo di materiali più sostenibili e l’implementazione di modelli produttivi circolari. Tra le alternative naturali, la lignina, un polimero aromatico abbondante presente nelle pareti cellulari delle piante e disponibile in grandi quantità come sottoprodotto dell’industria cartaria, offre un notevole potenziale come sostituto dei componenti fossili nella sintesi di polimeri e materiali avanzati. Tuttavia, la sua struttura complessa, l’elevata eterogeneità chimica e la variabilità legata sia all’origine della biomassa sia ai processi di estrazione costituiscono sfide significative per una sua valorizzazione su larga scala. Questa tesi di dottorato propone quattro strategie complementari per valorizzare la lignina, impiegandola come componente in materiali polimerici avanzati destinati ad applicazioni ad alte prestazioni e affrontando le principali sfide legate a reattività, compatibilità e integrazione funzionale. A tal fine, sono state considerate lignine provenienti da processi di estrazione kraft, soda e organosolv, ciascuna caratterizzata da una diversa struttura chimica determinata sia dall’origine della biomassa sia dalla modalità di estrazione. Le lignine kraft e soda sono state impiegate come sostituti parziali della componente novolacca in formulazioni commerciali di resine fenolo-formaldeide. Per migliorarne la reattività, le lignine sono state funzionalizzate mediante esterificazione con anidride succinica, incrementandone significativamente il contenuto di gruppi carbossilici. Questa modifica ha generalmente ridotto l’energia di attivazione del processo di reticolazione della resina e aumentato la densità di reticolazione attraverso la formazione di legami aggiuntivi, permettendo alla lignina kraft funzionalizzata di raggiungere il più elevato livello di incorporazione, pari al 30% in peso della fase novolacca. La lignina organosolv è stata invece impiegata come poliolo nella sintesi di rivestimenti termoindurenti poliuretanici con proprietà modulabili, ottenute controllandone il peso molecolare e, di conseguenza, la reattività dei gruppi ossidrilici, tramite frazionamento e depolimerizzazione parziale. Le frazioni di lignina a differenti pesi molecolari hanno mostrato comportamenti distinti: quelle ad alto peso molecolare hanno dato origine a rivestimenti più rigidi, caratterizzati da una temperatura di transizione vetrosa (Tg) elevata, mentre le frazioni a basso peso molecolare e le lignine depolimerizzate hanno contributo a rendere i gruppi ossidrilici maggiormente reattivi verso l’isocianato, portando alla formazione di rivestimenti più flessibili con Tg ridotta. Questi risultati hanno evidenziato una chiara correlazione tra le proprietà della lignina impiegata e le prestazioni dei rivestimenti, permettendo lo sviluppo di formulazioni con un contenuto di lignina superiore al 90% in peso. Nel contesto dell’impiego in materiali termoplastici, la lignina soda è stata trattata al plasma in un reattore operante in regime gliding arc tornado per migliorarne la compatibilità nelle miscele polipropilene-lignina senza ricorrere a compatibilizzanti o a ulteriori trattamenti chimici. Dopo il trattamento, si è osservato un marcato incremento di radicali fenossi, una riduzione del contenuto di gruppi ossidrilici e un aumento del grado di condensazione della struttura. Le miscele contenenti lignina trattata al plasma hanno mostrato maggiore stabilità termo-ossidativa, un incremento della rigidità, e un significativo miglioramento dell’allungamento a rottura: più che raddoppiato al 5% in peso di lignina e quasi quadruplicato al 10% rispetto alle mescole con lignina non trattata. Inoltre, tali formulazioni hanno mantenuto eccellenti proprietà meccaniche anche dopo il riciclo, mostrando una ritenzione dell’allungamento a rottura di circa il 95%. La struttura e le funzionalità chimiche della lignina sono state infine sfruttate per migliorare le prestazioni e la sicurezza di batterie litio-zolfo di nuova generazione. In particolare, a partire dalla lignina kraft sono state ottenute nanoparticelle sferiche di ~150 nm, incorporate al 30% in peso in una matrice reticolata di polietilenglicol diacrilato, formando un rivestimento composito applicato a un separatore commerciale in polipropilene, tipicamente utilizzato nelle batterie. Il separatore modificato ha efficacemente inibito il fenomeno di shuttle dei polisolfuri di litio – responsabile del deterioramento delle prestazioni durante la ciclazione della batteria – mediante l’ancoraggio superficiale di questi ultimi, mostrando prestazioni superiori rispetto al separatore non trattato. Nei test su celle pouch flessibili, l’impiego del separatore contenente lignina ha determinato un incremento dell’80% della capacità specifica e un miglioramento del 20% della ritenzione di capacità rispetto alle celle con separatore commerciale. Inoltre, il rivestimento a base di lignina ha aumentato l’affinità del separatore verso l’elettrolita, migliorandone la bagnabilità e favorendo un trasporto più efficiente degli ioni Li⁺. Contemporaneamente, ha accresciuto la stabilità termo-ossidativa del separatore, riducendone la propensione alla combustione e incrementando la sicurezza operativa della cella. Complessivamente, i risultati di questa tesi di dottorato hanno messo in luce l’elevata versatilità della lignina in un ampio spettro di applicazioni, fornendo preziose indicazioni sulle relazioni tra struttura, proprietà e funzionalità nei materiali e nei dispositivi a base di lignina, contribuendo a colmare le lacune che ancora ne limitano l’impiego industriale su larga scala.
Advanced lignin-based polymeric materials for sustainable manufacturing
Bellinetto, Emanuela
2024/2025
Abstract
The widespread reliance on fossil-based and finite resources in the polymer manufacturing industry poses critical environmental and economic challenges, including greenhouse gases emissions, resources depletion, and waste accumulation. Transitioning toward renewable, bio-derived feedstocks is essential for developing more sustainable materials and circular production systems. Among natural alternatives, lignin, an aromatic polymer constituting the plant cell walls and largely available as a byproduct of the pulp industry, holds considerable potential for replacing fossil-based constituents in polymers and functional materials. However, its inherent structural complexity, chemical heterogeneity, and variability with respect to biomass origin and extraction processes represent major obstacles to its large-scale integration in material manufacturing. This Ph.D. thesis presents four complementary strategies to valorize lignin into advanced polymeric materials for specific high-performance applications, addressing key challenges in lignin reactivity, compatibility, and functional integration. To this end, lignins obtained by kraft, soda, and organosolv extraction processes, each characterized by distinct biomass origins and chemical structures, were considered. Kraft and soda lignins were used as partial substitutes for the novolac component in a commercial phenol-formaldehyde formulation. To enhance their reactivity, lignins were functionalized via esterification with succinic anhydride, resulting in a marked increase in carboxyl group content. This modification generally lowered the activation energy associated with the resin crosslinking process and increased crosslinking density through the formation of additional permanent bonds, enabling succinylated kraft lignin to achieve the highest incorporation levels, reaching up to 30 wt% of the novolac phase. Polyurethane thermosetting coatings with tunable properties were developed by tailoring the molar mass and hydroxyl group reactivity of organosolv lignin through fractionation and partial catalytic depolymerization, allowing its effective use as a polyol in the synthesis process. Lignin fractions with controlled molecular weights exhibited distinct behaviors, where high-molecular-weight fractions formed more rigid coatings with higher Tg, and lower-molecular-weight and depolymerized lignins enhanced hydroxyl reactivity, yielding more flexible coatings with lower Tg, establishing a clear correlation between lignin characteristics and coating performance, and enabling formulations with over 90 wt% lignin content. In the context of thermoplastics, plasma treatment using a gliding arc tornado reactor was applied to soda lignin to improve its compatibility in polypropylene/lignin blends without the need for chemical compatibilizers. Treated lignin showed a marked increase in phenoxy radicals, reduced hydroxyl content, and a more condensed structure. Consequently, blends incorporating plasma-modified lignin exhibited greater thermo-oxidative stability, increased stiffness, and significantly improved elongation at break – more than doubled at 5 wt% lignin and nearly quadrupled at 10 wt% lignin vs. blends with untreated lignin – also maintaining an excellent mechanical performance after reprocessing, with strain at break retention around 95%. In more specialized functional applications, lignin structure and chemical functionalities were exploited to enhance the performance and safety of next-generation lithium-sulfur batteries. Kraft lignin was processed into nanoparticles (~150 nm) and incorporated at 30 wt% into a crosslinked polyethylene glycol diacrylate matrix, forming a composite coating that was applied to a commercial polypropylene separator. The modified separator outperformed its unmodified counterpart by effectively preventing the undesired shuttle of lithium polysulfides – which is detrimental to battery performance – through anchoring them onto the separator surface. As a result, in flexible pouch-cell assemblies, the lignin-containing separator delivered an 80% increase in specific capacity and a 20% improvement in capacity retention compared to cells with the commercial separator. Additionally, the coating improved electrolyte wettability, promoting more efficient lithium-ion transport, and enhanced thermal and oxidative stability of the separator, reducing combustion rates and supporting safer battery operation. Overall, the results obtained in this Ph.D. highlight the versatile potential of lignin across a wide range of applications, providing valuable insights into the structure-property-function relationships in lignin-based materials and devices and contributing to narrowing the existing gap that currently hinders the full utilization of lignin in industrial contexts.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025.09_PhD_Bellinetto.pdf
accessibile in internet per tutti
Descrizione: PhD Thesis
Dimensione
38.42 MB
Formato
Adobe PDF
|
38.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243200