Over the past few decades, Operational Excellence (OpEx) has established itself as the core philosophy for companies pursuing continuous improvement, with the goal of creating sustainable value over time across various organizational dimensions, such as product quality, waste reduction, financial results and employee engagement. OpEx is based on methodologies such as Lean, Six Sigma and Total Quality Management, designed to provide tools to optimise costs, speed, punctuality, quality and flexibility. The advent of the fourth industrial revolution, with Artificial Intelligence (AI) as the leading player, capable of processing large amounts of data and providing predictive and evaluative analysis, fits into this context with enormous potential for improving OpEx. A systematic literature review revealed that, despite the potential synergy between the two domains, there is a lack of a theoretical framework and limited interaction between AI and OpEx. This dissertation aims to address this gap through a research process consisting of three main phases. First, 18 OpEx techniques used in production processes were analysed in order to classify their impact on key performance dimensions. Second, consulting firm reports and industry case studies were examined to understand the objectives, enablers and barriers faced by companies in adopting AI in operations. The third and most significant phase of the work involved the development of an innovative framework to address the previously identified gap. For each Operational Excellence technique, the theoretical model illustrates how Artificial Intelligence could be used to further optimize production processes. To this end, the capabilities of AI and its operational modes are highlighted, along with the improvement of OpEx performance. Finally, to provide a more concrete overview of the corporate status quo, qualitative interviews were conducted with twelve companies operating in various industrial sectors. This provided insights into the level of adoption of AI in production processes and the barriers preventing its deployment. The most significant finding of the analysis highlighted that the application of AI in operations is still in its early stage, especially with regard to OpEx techniques. The originality of the paper lies in its twofold contribution: on the one hand, the frame work offers a theoretical foundation for the integration of AI and OpEx, filling a gap in the academic literature, and on the other, it provides companies with a practical tool to guide them in adopting AI in continuous improvement practices.
Negli ultimi decenni l’Operational Excellence (OpEx) si è affermata come la filosofia cardine di numerose imprese che mirano al miglioramento continuo, con l’obiettivo di creare valore sostenibile nel tempo nelle diverse dimensioni di un’organizzazione, quali, ad esempio, la qualità del prodotto, la riduzione degli sprechi, i risultati finanziari e il coinvolgimento dei dipendenti. L’OpEx si basa su metodologie come Lean, Six Sigma e Total Quality Management, finalizzate a fornire strumenti per ottimizzare costi, velocità, puntualità, qualità e flessibilità. L’avvento della quarta rivoluzione industriale, che vede l’Intelligenza Artificiale (IA) quale protagonista indiscussa, in grado di rielaborare grandi quantità di dati e fornire analisi predittive e valutative, si inserisce in questo contesto con un enorme potenziale di miglioramento dell’OpEx. Attraverso una revisione sistematica della letteratura, si è appurata, nonostante la possibile sinergia fra i due domini, la mancanza di un framework di riferimento e una limitata interazione fra l’IA e l’OpEx. Questo lavoro di tesi magistrale si propone di colmare questa carenza attraverso un processo di ricerca, che si è sviluppato in tre fasi principali. Dapprima, sono state analizzate 18 tecniche OpEx utilizzate nei processi produttivi, al fine di classificarne gli impatti sulle dimensioni chiave di performance. In seconda istanza, sono stati esaminati report di società di consulenza ed esempi di casi industriali per comprendere obiettivi, fattori abilitanti e barriere sperimentati dalle aziende nel percorso di adozione dell’IA nelle operations. La terza e più significativa fase del lavoro ha riguardato lo sviluppo di un framework innovativo che permette di colmare il gap precedentemente emerso. Per ciascuna tecnica dell’Operational Excellence, il modello teorico illustra in che modo l’intelligenza artificiale potrebbe essere impiegata per ottimizzare ulteriormente i processi produttivi. A tal fine, vengono evidenziate le capacità dell’IA e le relative modalità operative, unitamente al miglioramento delle performance OpEx. Infine, con l’obiettivo di offrire una panoramica più concreta sullo status quo aziendale, sono state condotte interviste qualitative a dodici imprese operanti in diversi settori industriali. Ciò ha permesso di ottenere informazioni sul livello di adozione dell’intelligenza artificiale nei processi produttivi e sulle barriere che ne ostacolano l’utilizzo. Il risultato più rilevante dell’analisi ha evidenziato che l’applicazione dell’IA nelle operations è ancora in fase embrionale, soprattutto per ciò che concerne le tecniche OpEx. L’originalità dell’elaborato è data da un duplice contributo: da un lato, il framework fornisce una base teorica sull’integrazione tra IA e OpEx andando a colmare un vuoto nella letteratura accademica e dall’altro offre alle aziende uno strumento pratico che possa guidarle nell’adozione dell’intelligenza artificiale nelle pratiche di miglioramento continuo.
The strategic role of Artificial Intelligence in shaping Operational Excellence
Pascucci, Martina;Gioia, Francesca
2024/2025
Abstract
Over the past few decades, Operational Excellence (OpEx) has established itself as the core philosophy for companies pursuing continuous improvement, with the goal of creating sustainable value over time across various organizational dimensions, such as product quality, waste reduction, financial results and employee engagement. OpEx is based on methodologies such as Lean, Six Sigma and Total Quality Management, designed to provide tools to optimise costs, speed, punctuality, quality and flexibility. The advent of the fourth industrial revolution, with Artificial Intelligence (AI) as the leading player, capable of processing large amounts of data and providing predictive and evaluative analysis, fits into this context with enormous potential for improving OpEx. A systematic literature review revealed that, despite the potential synergy between the two domains, there is a lack of a theoretical framework and limited interaction between AI and OpEx. This dissertation aims to address this gap through a research process consisting of three main phases. First, 18 OpEx techniques used in production processes were analysed in order to classify their impact on key performance dimensions. Second, consulting firm reports and industry case studies were examined to understand the objectives, enablers and barriers faced by companies in adopting AI in operations. The third and most significant phase of the work involved the development of an innovative framework to address the previously identified gap. For each Operational Excellence technique, the theoretical model illustrates how Artificial Intelligence could be used to further optimize production processes. To this end, the capabilities of AI and its operational modes are highlighted, along with the improvement of OpEx performance. Finally, to provide a more concrete overview of the corporate status quo, qualitative interviews were conducted with twelve companies operating in various industrial sectors. This provided insights into the level of adoption of AI in production processes and the barriers preventing its deployment. The most significant finding of the analysis highlighted that the application of AI in operations is still in its early stage, especially with regard to OpEx techniques. The originality of the paper lies in its twofold contribution: on the one hand, the frame work offers a theoretical foundation for the integration of AI and OpEx, filling a gap in the academic literature, and on the other, it provides companies with a practical tool to guide them in adopting AI in continuous improvement practices.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Gioia_Pascucci.pdf
non accessibile
Descrizione: Tesi
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF | Visualizza/Apri |
|
Executive_Summary_Gioia_Pascucci.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
297.3 kB
Formato
Adobe PDF
|
297.3 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243211