Heart transplantation remains the gold standard for the treatment of end-stage heart failure. However, the severe shortage of donor organs necessitates the development of alternative therapeutic strategies such as ventricular assist devices and total artificial hearts. Existing devices are predominantly based on rigid structures, which disrupt physiological blood flow and increase the risk of thrombogenesis. These limitations motivate the design of soft artificial ventricles (SAVs) that can more closely reproduce the compliant and dynamic behavior of the native myocardium. This thesis presents a proof of concept for an SAV inspired by the nested toroidal (NT) myoarchitecture of the left ventricle and actuated by McKibben artificial muscles. The NT arrangement was represented as smoothly twisting surfaces hosting continuous fiber and sheetlet fields. Finite element simulations demonstrated that this architecture promotes coordinated deformation, more uniform stress distribution, and biomimetic wall motions such as thickening, twist, and longitudinal shortening. To enable actuation, McKibben muscles were experimentally characterized and modeled using a reduced-order finite element framework, validated across multiple prototypes. Owing to their fiber-like geometry and substantial contraction capacity, these actuators are well suited to replicate native myofiber function. When integrated into the NT-based ventricle design, the model reproduced physiologically relevant pressures and ventricular-like deformation with relatively modest actuator strains. Nonetheless, ejection fractions remained lower than those of the native ventricle, primarily due to the constraints imposed by the passive elastomeric matrix. Overall, this work introduces a novel design paradigm that integrates cardiac myoarchitecture modeling with soft robotics. It demonstrates the feasibility of translating localized actuator shortening into global biomimetic deformation, thereby laying the groundwork for future soft artificial ventricles with enhanced physiological fidelity and translational potential.
Il trapianto di cuore rimane il trattamento di riferimento per l’insufficienza cardiaca terminale; tuttavia, la grave carenza di donatori rende necessario lo sviluppo di strategie terapeutiche alternative, quali i dispositivi di assistenza ventricolare e i cuori artificiali totali. Gli attuali dispositivi sono prevalentemente basati su strutture rigide, che alterano il flusso ematico fisiologico e aumentano il rischio di trombogenesi. Queste limitazioni motivano la progettazione di ventricoli artificiali soffici (SAV) in grado di riprodurre in modo più fedele il comportamento conforme e dinamico del miocardio nativo. Questa tesi presenta un proof of concept di un SAV ispirato alla mioarchitettura "nested tori" (NT) del ventricolo sinistro e azionato da muscoli artificiali McKibben. L’arrangiamento NT è stato rappresentato come superfici continue ospitanti campi di fibre e lamelle. Le simulazioni agli elementi finiti hanno dimostrato che tale architettura favorisce una deformazione coordinata, una distribuzione più uniforme delle tensioni e movimenti biomimetici della parete, quali ispessimento, torsione e accorciamento longitudinale. Per consentire l’attuazione, i muscoli di McKibben sono stati caratterizzati sperimentalmente e modellati mediante un approccio ridotto agli elementi finiti, validato su diversi prototipi. Grazie alla loro geometria fibrosa e all’elevata capacità di contrazione, questi attuatori risultano particolarmente adatti a replicare la funzione delle miofibre native. Integrati nel design ventricolare basato sull’architettura NT, il modello ha riprodotto pressioni fisiologicamente rilevanti e deformazioni ventricolari con modeste contrazioni degli attuatori. Tuttavia, le frazioni di eiezione sono risultate inferiori a quelle del ventricolo nativo, principalmente a causa delle limitazioni imposte dalla matrice elastomerica passiva. Complessivamente, questo lavoro introduce un nuovo paradigma progettuale che integra la modellazione della mioarchitettura cardiaca con la robotica soffice. Esso dimostra la fattibilità di tradurre contrazioni localizzate degli attuatori in deformazioni globali biomimetiche, ponendo le basi per futuri ventricoli artificiali soffici con maggiore fedeltà fisiologica e potenziale traslazionale.
Proof of concept for a biomimetic soft artificial ventricle
Osouli, Kasra
2024/2025
Abstract
Heart transplantation remains the gold standard for the treatment of end-stage heart failure. However, the severe shortage of donor organs necessitates the development of alternative therapeutic strategies such as ventricular assist devices and total artificial hearts. Existing devices are predominantly based on rigid structures, which disrupt physiological blood flow and increase the risk of thrombogenesis. These limitations motivate the design of soft artificial ventricles (SAVs) that can more closely reproduce the compliant and dynamic behavior of the native myocardium. This thesis presents a proof of concept for an SAV inspired by the nested toroidal (NT) myoarchitecture of the left ventricle and actuated by McKibben artificial muscles. The NT arrangement was represented as smoothly twisting surfaces hosting continuous fiber and sheetlet fields. Finite element simulations demonstrated that this architecture promotes coordinated deformation, more uniform stress distribution, and biomimetic wall motions such as thickening, twist, and longitudinal shortening. To enable actuation, McKibben muscles were experimentally characterized and modeled using a reduced-order finite element framework, validated across multiple prototypes. Owing to their fiber-like geometry and substantial contraction capacity, these actuators are well suited to replicate native myofiber function. When integrated into the NT-based ventricle design, the model reproduced physiologically relevant pressures and ventricular-like deformation with relatively modest actuator strains. Nonetheless, ejection fractions remained lower than those of the native ventricle, primarily due to the constraints imposed by the passive elastomeric matrix. Overall, this work introduces a novel design paradigm that integrates cardiac myoarchitecture modeling with soft robotics. It demonstrates the feasibility of translating localized actuator shortening into global biomimetic deformation, thereby laying the groundwork for future soft artificial ventricles with enhanced physiological fidelity and translational potential.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhDthesis_Osouli.pdf
non accessibile
Dimensione
10.3 MB
Formato
Adobe PDF
|
10.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243259