Buildings play a decisive role in global efforts to reduce greenhouse gas emissions. In fact, the International Energy Agency estimates that the building sector accounts for about 36% of final energy consumption worldwide, thus representing a significant contribution to climate change—especially in relation to achieving net zero energy building (NZEB) targets. Achieving such goals requires strategies capable of drastically reducing consumption through efficiency improvements and of meeting the residual demand with renewable sources. Within this framework, the façade plays a crucial role as it mediates the interaction with external environmental conditions—solar radiation, temperature, wind—and, as a significant part of the building envelope, strongly influences indoor climate and energy use. Conventional static façades, however, lack the flexibility needed to respond to dynamic conditions, often delivering suboptimal performance in terms of solar gain control, daylight use, and thermal regulation. Adaptive façade systems overcome these limitations by modifying their configuration in real time to optimize shading, natural lighting, ventilation, and insulation, improving energy efficiency and occupant comfort without sacrificing architectural quality. This study investigates the design and optimization of an innovative adaptive façade integrated with building-integrated photovoltaics (BIPV), as a strategy to achieve NZEB performance. The innovative system, proposed for transparent and semi-transparent façades, consists of a dynamic shading device with tiltable and extendable louvers, onto which thin photovoltaic modules can be integrated. In this way, the façade functions as a multifunctional envelope capable not only of dynamically responding to variable environmental conditions, but also of acting as an in-situ renewable energy generator. To evaluate its potential performance during the design phase, a parametric model was developed in Rhinoceros 3D/Grasshopper, linked to Climate Studio, along with a control algorithm implemented in Python. Hourly simulations were conducted for a typical year on an office building module in Milan with a south-facing façade. This simulation procedure enabled an accurate assessment of the adaptive façade’s impact on indoor daylighting and an estimate of its photovoltaic generation potential. The results show that, compared to an optimized static shading configuration for the whole year, the adaptive façade ensures a clear improvement in natural lighting while maintaining effective solar control. In particular, the share of occupied hours with indoor illuminance levels within the target range increased by about 57% under the adaptive regime, thanks to real-time adjustment of louver angles based on solar radiation and predictions of indoor illuminance. Since the control logic prioritizes visual comfort, the solar radiation incident on the photovoltaic surfaces is reduced by about 11% compared to the static configuration; nonetheless, the energy potential of the BIPV modules integrated into the louvers is expected to be sufficient to cover the system’s operational needs, fostering self-sufficiency. In summary, the adaptive BIPV façade extends the duration of visual comfort conditions while simultaneously producing renewable energy, representing a significant advancement over static façades and confirming the potential contribution of such systems to NZEB goals through reduced consumption and on-site generation.
Gli edifici svolgono un ruolo determinante negli sforzi globali di riduzione delle emissioni di gas serra, l’Agenzia Internazionale dell’Energia, stima infatti che il settore edilizio rappresenta circa il 36% dei consumi finali di energia a livello mondiale, costituendo quindi un contributo significativo al cambiamento climatico. soprattutto in relazione al conseguimento degli obiettivi di energia netta zero (NZEB). Raggiungimento di tali obiettivi richiede strategie capaci di ridurre drasticamente i consumi attraverso il miglioramento dell’efficienza e di soddisfare il fabbisogno residuo con fonti rinnovabili. In questo quadro, la facciata riveste un ruolo cruciale poiché media l’interazione con le condizioni ambientali esterne—irraggiamento solare, temperatura, vento—e, costituendo una parte significativa dell’involucro edilizio, incide fortemente sul clima interno e sui consumi energetici. Le facciate statiche convenzionali, tuttavia, non dispongono della flessibilità necessaria per rispondere a condizioni dinamiche, con prestazioni spesso subottimali in termini di controllo degli apporti solari, sfruttamento della luce naturale e regolazione termica. I sistemi di facciata adattivi superano tali limiti modificando la propria configurazione in tempo reale per ottimizzare ombreggiamento, illuminazione naturale, ventilazione e isolamento, migliorando l’efficienza energetica e il comfort degli occupanti senza sacrificare la qualità architettonica. Questo studio indaga la progettazione e l’ottimizzazione di una facciata adattiva innovativa integrata con fotovoltaico integrato negli edifici (BIPV), come strategia per il raggiungimento delle prestazioni NZEB. Il sistema innovativo, proposto per facciate trasparenti e semitrasparenti è costituito da una schermatura dinamica, con lamelle inclinabili ed estendibili, su cui sono integrabili sottili moduli fotovoltaici. Il tal modo la facciata funziona come involucro multifunzionale in grado non solo di rispondere dinamicamente alle condizioni ambientali variabili, ma anche di operare come generatore di energia rinnovabile in situ. Per valutarne le potenziali prestazioni in fase di progetto è stato sviluppato un modello parametrico in Rhinoceros 3D/Grasshopper, collegato a Climate Studi,o ed un algoritmo di controllo implementato in Python. Le simulazioni orarie sono state condotte per un anno tipo per un modulo edilizio ad uso ufficio in Milano con la facciata orientata a Sud. Tale procedura di simulazione ha consentito una valutazione accurata dell’impatto della facciata adattiva sull’illuminazione diurna interna una stima del suo potenziale di produzione fotovoltaica.. I risultati mostrano che, rispetto a una configurazione di schermatura statica ottimizzata per l’intero anno, la facciata adattiva garantisce un netto miglioramento dell’illuminazione naturale mantenendo al contempo un efficace controllo solare. In particolare, la quota di ore di occupazione con livelli di illuminamento interni compresi nell’intervallo obiettivo è aumentata di circa 57% in regime adattivo, grazie alla regolazione in tempo reale delle angolazioni delle lamelle in funzione dell’irraggiamento e della previsione sull’illuminamento interno. Poiché la logica di controllo privilegia il comfort visivo, l’irraggiamento solare incidente sulle superfici fotovoltaiche rispetto alla configurazione statica risulta ridotto di circa il 11%; ciononostante, il potenziale energetico dei moduli BIPV integrati nelle lamelle è atteso sufficiente a coprire i fabbisogni operativi del sistema, favorendo l’autosufficienza. In sintesi, la facciata adattiva BIPV estende la durata delle condizioni di comfort visivo e, simultaneamente, produce energia rinnovabile, rappresentando un avanzamento significativo rispetto alle facciate statiche e confermando il contributo potenziale di tali sistemi agli obiettivi NZEB mediante la riduzione dei consumi e la generazione in sito.
Daylight performance assessment of adaptive facade louvers with BIPV integration
Kayalar, Busra;Budak, Firuze Zeynep
2024/2025
Abstract
Buildings play a decisive role in global efforts to reduce greenhouse gas emissions. In fact, the International Energy Agency estimates that the building sector accounts for about 36% of final energy consumption worldwide, thus representing a significant contribution to climate change—especially in relation to achieving net zero energy building (NZEB) targets. Achieving such goals requires strategies capable of drastically reducing consumption through efficiency improvements and of meeting the residual demand with renewable sources. Within this framework, the façade plays a crucial role as it mediates the interaction with external environmental conditions—solar radiation, temperature, wind—and, as a significant part of the building envelope, strongly influences indoor climate and energy use. Conventional static façades, however, lack the flexibility needed to respond to dynamic conditions, often delivering suboptimal performance in terms of solar gain control, daylight use, and thermal regulation. Adaptive façade systems overcome these limitations by modifying their configuration in real time to optimize shading, natural lighting, ventilation, and insulation, improving energy efficiency and occupant comfort without sacrificing architectural quality. This study investigates the design and optimization of an innovative adaptive façade integrated with building-integrated photovoltaics (BIPV), as a strategy to achieve NZEB performance. The innovative system, proposed for transparent and semi-transparent façades, consists of a dynamic shading device with tiltable and extendable louvers, onto which thin photovoltaic modules can be integrated. In this way, the façade functions as a multifunctional envelope capable not only of dynamically responding to variable environmental conditions, but also of acting as an in-situ renewable energy generator. To evaluate its potential performance during the design phase, a parametric model was developed in Rhinoceros 3D/Grasshopper, linked to Climate Studio, along with a control algorithm implemented in Python. Hourly simulations were conducted for a typical year on an office building module in Milan with a south-facing façade. This simulation procedure enabled an accurate assessment of the adaptive façade’s impact on indoor daylighting and an estimate of its photovoltaic generation potential. The results show that, compared to an optimized static shading configuration for the whole year, the adaptive façade ensures a clear improvement in natural lighting while maintaining effective solar control. In particular, the share of occupied hours with indoor illuminance levels within the target range increased by about 57% under the adaptive regime, thanks to real-time adjustment of louver angles based on solar radiation and predictions of indoor illuminance. Since the control logic prioritizes visual comfort, the solar radiation incident on the photovoltaic surfaces is reduced by about 11% compared to the static configuration; nonetheless, the energy potential of the BIPV modules integrated into the louvers is expected to be sufficient to cover the system’s operational needs, fostering self-sufficiency. In summary, the adaptive BIPV façade extends the duration of visual comfort conditions while simultaneously producing renewable energy, representing a significant advancement over static façades and confirming the potential contribution of such systems to NZEB goals through reduced consumption and on-site generation.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Budak_Kayalar.pdf
accessibile in internet per tutti a partire dal 30/09/2026
Dimensione
6.97 MB
Formato
Adobe PDF
|
6.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243285