The urgent need for industrial decarbonization and the global shift toward renewable energy have renewed interest in green hydrogen as a sustainable energy carrier. In this context, offshore H2 production from seawater using renewable electricity offers a strategic solution to the limitations of onshore plants, such as freshwater scarcity, land occupation, and high compression costs. This thesis proposes an integrated offshore hydrogen production framework based on two main units: a seawater reverse osmosis (SWRO) desalination module and a proton exchange membrane (PEM) electrolyzer. Both units are modeled in detail and implemented as CAPE-OPEN compliant external objects, enabling their integration in the Aspen HYSYS® simulation environment. The SWRO unit is developed using a membrane-specific mathematical model, calibrated on experimental data and validated across different feed conditions to ensure accurate performance prediction. The PEM electrolyzer model includes electrochemical, thermodynamic, and mass transfer aspects and computes outlet stream compositions, power consumption, and system efficiencies. A special attention is given to differential pressure operation, which allows the direct production of dry pressurized hydrogen, removing the need for the subsequent mechanical compression. A comparative analysis of various plant configurations highlights the influence of operating conditions on overall efficiency, demonstrating that a fully offshore system based on SWRO and PEM can outperform conventional onshore solutions using alkaline electrolysis and freshwater (especially regarding energy consumption and plant compactness). Key limitations such as efficiency losses and membrane crossover are also addressed, outlining directions for future development. This work presents the first complete implementation of PEM and SWRO units in a CAPE-OPEN framework and contributes to the design of next-generation offshore hydrogen production systems, providing a flexible and realistic tool for techno-economic evaluation and optimization.
L’urgente necessità di decarbonizzare l’industria e il crescente ricorso alle fonti rinnovabili hanno rinnovato l’interesse per l’idrogeno verde come vettore energetico sostenibile. In questo contesto, la produzione off-shore di H2 da acqua marina tramite energia elettrica da fonti rinnovabili rappresenta una soluzione strategica ai limiti degli impianti on-shore, come la scarsità di acqua dolce, l’occupazione di suolo e gli elevati costi di compressione. Questa tesi propone un framework integrato per la produzione off-shore di idrogeno basato su due unità principali: un modulo di osmosi inversa per acqua marina (SWRO) e un elettrolizzatore a membrana a scambio protonico (PEM), entrambi modellati in dettaglio e implementati come oggetti CAPE-OPEN per l’integrazione in Aspen HYSYS®. La SWRO è sviluppata mediante un modello matematico specifico di membrana, calibrato su dati sperimentali e validato in diverse condizioni operative. Il modello PEM include aspetti elettrochimici, termodinamici e di trasporto di massa e calcola composizioni in uscita, consumi energetici ed efficienze. Particolare attenzione è dedicata al funzionamento in pressione differenziale, che consente direttamente la produzione di idrogeno secco e pressurizzato, eliminando la successiva compressione meccanica. Un’analisi comparativa di diverse configurazioni impiantistiche evidenzia l’influenza delle condizioni operative sull’efficienza complessiva, dimostrando che un impianto interamente off-shore basato su SWRO e PEM può superare le soluzioni on-shore convenzionali con elettrolizzatori alcalini, soprattutto per consumi energetici e compattezza. Sono inoltre affrontate criticità come perdite termiche e crossover di membrana, delineando possibili sviluppi futuri. Questo lavoro rappresenta la prima implementazione completa di unità PEM e SWRO in un framework CAPE-OPEN e contribuisce alla progettazione di sistemi off-shore di nuova generazione per la produzione di idrogeno, offrendo uno strumento flessibile e realistico per valutazioni tecno-economiche e ottimizzazione d'impianto.
Offshore green hydrogen production from seawater: CAPE-OPEN units implementation and performance analysis of different plant configurations
CAVINA, GIULIO;Faltracco, Matteo
2024/2025
Abstract
The urgent need for industrial decarbonization and the global shift toward renewable energy have renewed interest in green hydrogen as a sustainable energy carrier. In this context, offshore H2 production from seawater using renewable electricity offers a strategic solution to the limitations of onshore plants, such as freshwater scarcity, land occupation, and high compression costs. This thesis proposes an integrated offshore hydrogen production framework based on two main units: a seawater reverse osmosis (SWRO) desalination module and a proton exchange membrane (PEM) electrolyzer. Both units are modeled in detail and implemented as CAPE-OPEN compliant external objects, enabling their integration in the Aspen HYSYS® simulation environment. The SWRO unit is developed using a membrane-specific mathematical model, calibrated on experimental data and validated across different feed conditions to ensure accurate performance prediction. The PEM electrolyzer model includes electrochemical, thermodynamic, and mass transfer aspects and computes outlet stream compositions, power consumption, and system efficiencies. A special attention is given to differential pressure operation, which allows the direct production of dry pressurized hydrogen, removing the need for the subsequent mechanical compression. A comparative analysis of various plant configurations highlights the influence of operating conditions on overall efficiency, demonstrating that a fully offshore system based on SWRO and PEM can outperform conventional onshore solutions using alkaline electrolysis and freshwater (especially regarding energy consumption and plant compactness). Key limitations such as efficiency losses and membrane crossover are also addressed, outlining directions for future development. This work presents the first complete implementation of PEM and SWRO units in a CAPE-OPEN framework and contributes to the design of next-generation offshore hydrogen production systems, providing a flexible and realistic tool for techno-economic evaluation and optimization.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Cavina_Faltracco_Tesi_01.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
23.22 MB
Formato
Adobe PDF
|
23.22 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Cavina_Faltracco_Executive Summary_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243306