This thesis proposes an original methodology for the early-stage design of floating offshore wind farms, where geophysical, technical and economic factors are assessed and harmonized in an integrated framework. The thesis work was structured in sequential phases, following a techno-economic approach. 1. Anchoring Analysis: three main types of pile anchors were studied − suction piles, driven piles, and drilled and grouted piles − evaluating their physical characteristics, seabed adaptability, and installation methods. 2. Seabed Analysis: survey results of seabed investigation were analysed, employing tools such as SBP, SPK, MBES, SSS, MAG, and ROV, which collectively formed the dataset within the QGIS system. 3. Anchoring Feasibility Analysis: a dedicated GIS-based analysis was performed to identify technical suitability areas for each anchoring type, based on geophysical constraints such as seabed slope, rock depth and exclusion zones. This process provided an anchoring installation feasibility map, where each anchoring solution was ranked as highly feasible, potentially feasible, unlikely feasible or not feasible for each point of the seabed area, thus supporting anchoring selection in the following phase of floating wind project development. 4. Scenario Analysis: by combining rock depth and seabed slope data, areas with high feasibility for each anchoring type were identified through QGIS processing. Two potential scenarios were then outlined: - Scenario #1: exclusion of rocky zones, using a single anchoring type (driven piles). - Scenario #2: no exclusion, using two anchoring types (driven and drilled piles). 5. Annual Energy Production (AEP): the two different scenarios were simulated to assess the annual energy production, using a Jensen wake model implemented in Python. 6. Economic Analysis (LCoE): an Excel-based model was used to calculate the Levelized Cost of Electricity (LCoE) for each configuration over a 30-year project life-time. The analysis demonstrated that, despite the higher cost of drilled piles – estimated to be approximately 40% more expensive than driven piles – the combined use of both anchoring system (Scenario #2) enables a 1.1% increase in AEP due to the better site exploitation. This performance gain translated into a 0.9% reduction in the overall LCoE for Scenario #2 compared to Scenario #1. These results highlight the value of integrating anchoring feasibility studies with geophysical analysis already in the early design phase. The original approach demonstrates the potential of combining seabed stratigraphy with GIS-based feasibility mapping to support the optimization of turbine layout and long-term LCoE reduction in floating offshore wind farms.
Questa tesi propone una metodologia originale per la progettazione preliminare di parchi eolici offshore galleggianti, in cui fattori geofisici, tecnici ed economici vengono valutati e armonizzati in un quadro integrato. Il lavoro di tesi è stato strutturato in fasi sequenziali, seguendo un approccio tecno-economico. 1. Analisi degli ancoraggi: sono stati studiati tre principali tipi di ancoraggi a palo – suction piles, driven piles e drilled and grouted piles – valutandone le caratteristiche fisiche, l’adattabilità al fondale e i metodi di installazione. 2. Analisi del fondale marino: sono stati analizzati i risultati delle indagini geofisiche, utilizzando strumenti quali SBP, SPK, MBES, SSS, MAG e ROV, che hanno costituito il dataset impiegato all’interno del sistema QGIS. 3. Analisi di fattibilità degli ancoraggi: è stata condotta un’analisi specifica basata su GIS per identificare le aree tecnicamente idonee a ciascun tipo di ancoraggio, sulla base di vincoli geofisici quali pendenza del fondale, profondità della roccia e zone di esclusione. Questo processo ha fornito una mappa di fattibilità per l’installazione degli ancoraggi, nella quale ciascuna soluzione è stata classificata come altamente fattibile, potenzialmente fattibile, poco fattibile o non fattibile per ciascun punto dell’area del fondale, supportando così la scelta degli ancoraggi nella successiva fase di sviluppo del progetto eolico galleggiante. 4. Analisi di scenario: combinando i dati sulla profondità della roccia e sulla pendenza del fondale, sono state individuate mediante elaborazione QGIS le aree ad alta fattibilità per ciascun tipo di ancoraggio. Sono stati quindi delineati due scenari: Scenario n.1: esclusione delle zone rocciose, con utilizzo di un solo tipo di ancoraggio (driven piles). Scenario n.2: nessuna esclusione, con utilizzo di due tipi di ancoraggio (driven e drilled piles). 5. Produzione annua di energia (AEP): i due scenari sono stati simulati per stimare la produzione annua di energia, utilizzando un modello di wake Jensen implementato in Python. 6. Analisi economica (LCoE): un modello sviluppato in Excel è stato utilizzato per calcolare il Levelized Cost of Electricity (LCoE) per ciascuna configurazione, considerando un ciclo di vita del progetto di 30 anni. L’analisi ha dimostrato che, nonostante il costo più elevato dei drilled piles – stimato in circa il 40% superiore rispetto ai driven piles – l’utilizzo combinato di entrambi i sistemi di ancoraggio (Scenario n.2) consente un incremento dell’AEP pari all’1,1% grazie a un migliore sfruttamento del sito. Questo guadagno prestazionale si è tradotto in una riduzione complessiva dello 0,9% del LCoE nello Scenario n.2 rispetto allo Scenario n.1. Questi risultati evidenziano il valore di integrare gli studi di fattibilità degli ancoraggi con l’analisi geofisica già nella fase preliminare di progettazione. L’approccio originale dimostra il potenziale di combinare la stratigrafia del fondale con le mappe di fattibilità basate su GIS per supportare l’ottimizzazione del layout delle turbine e la riduzione a lungo termine del LCoE nei parchi eolici offshore galleggianti.
A techno-economic analysis of anchoring technologies for floating offshore wind farm
Paolini, Marco
2024/2025
Abstract
This thesis proposes an original methodology for the early-stage design of floating offshore wind farms, where geophysical, technical and economic factors are assessed and harmonized in an integrated framework. The thesis work was structured in sequential phases, following a techno-economic approach. 1. Anchoring Analysis: three main types of pile anchors were studied − suction piles, driven piles, and drilled and grouted piles − evaluating their physical characteristics, seabed adaptability, and installation methods. 2. Seabed Analysis: survey results of seabed investigation were analysed, employing tools such as SBP, SPK, MBES, SSS, MAG, and ROV, which collectively formed the dataset within the QGIS system. 3. Anchoring Feasibility Analysis: a dedicated GIS-based analysis was performed to identify technical suitability areas for each anchoring type, based on geophysical constraints such as seabed slope, rock depth and exclusion zones. This process provided an anchoring installation feasibility map, where each anchoring solution was ranked as highly feasible, potentially feasible, unlikely feasible or not feasible for each point of the seabed area, thus supporting anchoring selection in the following phase of floating wind project development. 4. Scenario Analysis: by combining rock depth and seabed slope data, areas with high feasibility for each anchoring type were identified through QGIS processing. Two potential scenarios were then outlined: - Scenario #1: exclusion of rocky zones, using a single anchoring type (driven piles). - Scenario #2: no exclusion, using two anchoring types (driven and drilled piles). 5. Annual Energy Production (AEP): the two different scenarios were simulated to assess the annual energy production, using a Jensen wake model implemented in Python. 6. Economic Analysis (LCoE): an Excel-based model was used to calculate the Levelized Cost of Electricity (LCoE) for each configuration over a 30-year project life-time. The analysis demonstrated that, despite the higher cost of drilled piles – estimated to be approximately 40% more expensive than driven piles – the combined use of both anchoring system (Scenario #2) enables a 1.1% increase in AEP due to the better site exploitation. This performance gain translated into a 0.9% reduction in the overall LCoE for Scenario #2 compared to Scenario #1. These results highlight the value of integrating anchoring feasibility studies with geophysical analysis already in the early design phase. The original approach demonstrates the potential of combining seabed stratigraphy with GIS-based feasibility mapping to support the optimization of turbine layout and long-term LCoE reduction in floating offshore wind farms.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Paolini.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
8.09 MB
Formato
Adobe PDF
|
8.09 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Paolini_ExtendedAbstract.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Extended abstract
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243320