Viral genomic surveillance plays a crucial role in understanding, monitoring, and mitigating the spread of infectious diseases. The COVID-19 pandemic, caused by SARS-CoV-2, has highlighted the need for rapid and transparent genomic monitoring systems, while the recurring global impact of Influenza A viruses continues to demonstrate the importance of long-term surveillance. Tracking viral evolution in near real time enables timely responses in public health, vaccine development, and outbreak containment. Automatic and continuously updating systems are particularly important as they ensure that researchers have access to the most recent data without manual intervention. Systems built on open-source data are especially valuable as they ensure transparency, facilitate collaboration, and encourage knowledge dissemination throughout the scientific community. This way, the collective progress and preparedness for future outbreaks are ensured. This thesis presents two systems, YoyoMut and openFluWarning, designed as mutation analysis and early warning systems for SARS-CoV-2 and Influenza A viruses. Both systems, developed with the aforementioned goals in mind, work as automatically updating systems using open-source data and, as such, demonstrate the potential of automated approaches to viral genomic surveillance, supporting scientific discovery and global collaboration.
La sorveglianza genomica virale svolge un ruolo cruciale nella comprensione, monitoraggio e mitigazione della diffusione delle malattie infettive. La pandemia di COVID-19, causata dal SARS-CoV-2, ha evidenziato la necessità di sistemi di monitoraggio genomico rapidi e trasparenti, mentre il ricorrente impatto globale dei virus dell'Influenza A dimostra l'importanza della sorveglianza sul lungo termine. Il monitoraggio dell'evoluzione virale in tempo quasi reale consente di intervenire tempestivamente nella sanità pubblica, nello sviluppo di vaccini e nel contenimento delle epidemie. I sistemi automatici e in continuo aggiornamento sono particolarmente importanti, poiché garantiscono ai ricercatori l'accesso ai dati più recenti senza intervento manuale. I sistemi basati su dati open source sono particolarmente preziosi in quanto garantiscono trasparenza, facilitano la collaborazione e incoraggiano la diffusione delle conoscenze in tutta la comunità scientifica. In questo modo si garantisce il progresso collettivo e la preparazione per future epidemie. Questa tesi presenta due sistemi, YoyoMut e openFluWarning, progettati rispettivamente come sistemi di analisi delle mutazioni per il virus SARS-CoV-2 e di allerta precoce per il virus Influenza A. Entrambi i sistemi, sviluppati in linea con gli obiettivi sopra menzionati, funzionano come sistemi ad aggiornamento automatico che utilizzano dati open source e, in quanto tali, dimostrano il potenziale degli approcci automatizzati alla sorveglianza genomica virale, sostenendo la scoperta scientifica e la collaborazione globale.
Viral genomic surveillance using automatic monitoring pipelines
PENIC, JANA
2024/2025
Abstract
Viral genomic surveillance plays a crucial role in understanding, monitoring, and mitigating the spread of infectious diseases. The COVID-19 pandemic, caused by SARS-CoV-2, has highlighted the need for rapid and transparent genomic monitoring systems, while the recurring global impact of Influenza A viruses continues to demonstrate the importance of long-term surveillance. Tracking viral evolution in near real time enables timely responses in public health, vaccine development, and outbreak containment. Automatic and continuously updating systems are particularly important as they ensure that researchers have access to the most recent data without manual intervention. Systems built on open-source data are especially valuable as they ensure transparency, facilitate collaboration, and encourage knowledge dissemination throughout the scientific community. This way, the collective progress and preparedness for future outbreaks are ensured. This thesis presents two systems, YoyoMut and openFluWarning, designed as mutation analysis and early warning systems for SARS-CoV-2 and Influenza A viruses. Both systems, developed with the aforementioned goals in mind, work as automatically updating systems using open-source data and, as such, demonstrate the potential of automated approaches to viral genomic surveillance, supporting scientific discovery and global collaboration.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Penic_Executive Summary_02.pdf
accessibile in internet per tutti a partire dal 30/09/2026
Descrizione: Executive Summary
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Penic_Thesis_01.pdf
accessibile in internet per tutti a partire dal 30/09/2026
Descrizione: Thesis Text
Dimensione
6 MB
Formato
Adobe PDF
|
6 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243324