Carbon-based composites produced via Chemical Vapor Deposition (CVD) and Chemical Vapor Infiltration (CVI) are increasingly relevant in advanced applications due to the unique structural and thermal properties of their pyrolytic carbon (PyC) matrix. The objective of this thesis is to develop a comprehensive kinetic model capable of describing both soot formation in the gas phase and pyrolytic carbon deposition in the solid matrix. Building on the CRECK Modeling Kinetic Framework and extending previous studies by Serse et al. and Giudici et al., a novel mechanism has been formulated that integrates heterogeneous gas-phase reactions with surface kinetics in a consistent manner. The gas-phase mechanism, including soot precursors, was validated against experimental literature data, reproducing product distributions with satisfactory accuracy. A surface kinetic model was subsequently developed by defining systematic rate rules for different reaction classes and by expanding deposition pathways to include C4 and polycyclic aromatic hydrocarbon (PAH) species. Special attention was given to modeling structural defects within the carbon matrix, with a focus on five-member rings and the hybridization state of surface carbon atoms. Model predictions were validated against experimental references, confirming the framework’s ability to capture the influence of operating conditions on both defect concentration and carbon hybridization fraction. A qualitative analysis of pyrolytic carbon microstructure was also performed to assess the crystallinity. While descriptors such as defect density and sp2-hybridization fraction provided valuable insights, they were found to be insufficient to fully characterize microcrystallinity, highlighting the need for additional structural parameters. Overall, the proposed CVD/CVI kinetic model represents a robust foundation for describing soot formation and pyrolytic carbon growth, while providing guidance for future improvements. Extensions should include additional deposition pathways involving larger PAHs and soot particles, as well as a more comprehensive representation of structural defects, to further enhance predictive capabilities and support the optimization of advanced carbon-based materials.
I compositi a base di carbonio ottenuti tramite Chemical Vapour Deposition (CVD) e Infiltration (CVI) stanno acquisendo un ruolo di crescente rilevanza nelle applicazioni avanzate, grazie alle proprietà strutturali e termiche uniche della matrice di carbonio pirolitico (PyC). L’obiettivo di questo lavoro è lo sviluppo di un modello cinetico dettagliato, in grado di descrivere sia la formazione di fuliggine in fase gassosa, sia la deposizione pirolitica di carbonio nella matrice solida. Basandosi sul modello cinetico CRECK e ampliando i contributi di Serse et al. e Giudici et al., è stato formulato un nuovo meccanismo che integra in modo coerente le reazioni eterogenee in fase gassosa con la cinetica di superficie. Il meccanismo gassoso, comprendente i precursori della fuliggine, è stato validato rispetto a dati sperimentali di letteratura, riproducendo le distribuzioni dei prodotti con accuratezza soddisfacente. Successivamente è stato sviluppato un modello cinetico superficiale, definendo regole di velocità di reazione sistematiche per diverse classi di reazione ed estendendo i percorsi di deposito fino a includere specie C4 e idrocarburi policiclici aromatici (IPA). Particolare attenzione è stata rivolta alla modellazione dei difetti strutturali all’interno della matrice carboniosa, focalizzandosi sugli anelli a cinque atomi di carbonio e sullo stato di ibridazione degli atomi superficiali. Le previsioni del modello sono state confrontate con dati sperimentali, confermando la capacità del modello cinetico di descrivere l’influenza delle condizioni operative sia sulla concentrazione dei difetti sia sulla frazione di ibridazione del carbonio superficiale. È stata inoltre condotta un’analisi qualitativa della microstruttura del carbonio pirolitico per caratterizzarne la cristallinità. Sebbene gli indicatori individuati per valutare la qualità del PyC abbiano fornito indicazioni utili, essi si sono dimostrati insufficienti per una caratterizzazione completa della microcristallinità, mettendo in luce la necessità di introdurre ulteriori parametri strutturali. Nel complesso, il modello cinetico CVD/CVI proposto rappresenta una base solida per la descrizione dei processi di formazione della fuliggine e di crescita pirolitica del carbonio, fornendo spunti per futuri sviluppi. Tra le estensioni auspicate vi sono l’inclusione di ulteriori percorsi di deposizione che coinvolgono IPA e particelle di fuliggine di dimensioni maggiori, nonché una rappresentazione più dettagliata dei difetti strutturali, con l’obiettivo di migliorare ulteriormente le capacità predittive e supportare l’ottimizzazione di materiali avanzati a base di carbonio.
Kinetic modeling of chemical vapour infiltration and deposition processes
RICHIEDEI, ALICE
2024/2025
Abstract
Carbon-based composites produced via Chemical Vapor Deposition (CVD) and Chemical Vapor Infiltration (CVI) are increasingly relevant in advanced applications due to the unique structural and thermal properties of their pyrolytic carbon (PyC) matrix. The objective of this thesis is to develop a comprehensive kinetic model capable of describing both soot formation in the gas phase and pyrolytic carbon deposition in the solid matrix. Building on the CRECK Modeling Kinetic Framework and extending previous studies by Serse et al. and Giudici et al., a novel mechanism has been formulated that integrates heterogeneous gas-phase reactions with surface kinetics in a consistent manner. The gas-phase mechanism, including soot precursors, was validated against experimental literature data, reproducing product distributions with satisfactory accuracy. A surface kinetic model was subsequently developed by defining systematic rate rules for different reaction classes and by expanding deposition pathways to include C4 and polycyclic aromatic hydrocarbon (PAH) species. Special attention was given to modeling structural defects within the carbon matrix, with a focus on five-member rings and the hybridization state of surface carbon atoms. Model predictions were validated against experimental references, confirming the framework’s ability to capture the influence of operating conditions on both defect concentration and carbon hybridization fraction. A qualitative analysis of pyrolytic carbon microstructure was also performed to assess the crystallinity. While descriptors such as defect density and sp2-hybridization fraction provided valuable insights, they were found to be insufficient to fully characterize microcrystallinity, highlighting the need for additional structural parameters. Overall, the proposed CVD/CVI kinetic model represents a robust foundation for describing soot formation and pyrolytic carbon growth, while providing guidance for future improvements. Extensions should include additional deposition pathways involving larger PAHs and soot particles, as well as a more comprehensive representation of structural defects, to further enhance predictive capabilities and support the optimization of advanced carbon-based materials.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Richiedei_Tesi_01.pdf
accessibile in internet per tutti a partire dal 25/09/2026
Descrizione: testo tesi
Dimensione
5.82 MB
Formato
Adobe PDF
|
5.82 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Richiedei_ Executive Summary_02.pdf
accessibile in internet per tutti a partire dal 25/09/2026
Descrizione: executive summary
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243339