This thesis investigates Artificial Intelligence (AI) startups, their business models, and strategic dynamics, with a progressive focus on their role in the energy sector. The study is structured around six chapters, beginning with an overview of the transformative power of AI and the emerging role of AI-driven startups. A two-phase literature review follows, identifying eight key dimensions that characterize how AI startups operate and outlining critical research gaps, especially within the energy domain. Building on these insights, a conceptual framework, divided into eight macro blocks, is developed and then adapted specifically to the energy sector, capturing the technological, strategic, and organizational dynamics that shape AI startup activity. An empirical analysis of 91 AI startups active between 2020 and 2025 provides evidence on their positioning within the electricity value chain, functional specialization, funding levels, and geographical trends. The findings reveal patterns of concentration in renewable generation, industrial efficiency, and asset optimization, and are further interpreted through their integration into the conceptual framework of the energy sector. The concluding synthesis highlights how value chain positioning, functionalities, funding distribution, and framework alignment converge, identifying the clusters where innovation and financial resources are most concentrated. Finally, the study underscores the limitations posed by reliance on publicly available data and the opacity surrounding failed ventures. By highlighting the need for longitudinal monitoring and direct engagement with discontinued startups, it points to future research directions aimed at overcoming survivorship bias and capturing the full spectrum of entrepreneurial dynamics.
Questa tesi analizza le startup basate sull’Intelligenza Artificiale (AI), i loro modelli di business e le dinamiche strategiche, con un focus progressivo sul loro ruolo nel settore energetico. Lo studio è articolato in sei capitoli: si apre con una panoramica sul potere trasformativo dell’AI e sul ruolo emergente delle startup AI-driven. Segue una revisione della letteratura in due fasi, che identifica otto dimensioni chiave attraverso cui operano le startup di AI e delinea i principali gap di ricerca, in particolare all’interno del settore energetico. Sulla base di queste evidenze, viene sviluppato un framework concettuale articolato in otto macro-blocchi, successivamente adattato specificamente al settore energetico, così da cogliere le dinamiche tecnologiche, strategiche e organizzative che caratterizzano l’attività delle startup di AI. Un’analisi empirica di 91 startup attive tra il 2020 e il 2025 fornisce evidenze sulla loro collocazione lungo la filiera elettrica, sulla specializzazione funzionale, sui livelli di finanziamento e sulle tendenze geografiche. I risultati mostrano schemi di concentrazione nella generazione da fonti rinnovabili, nell’efficienza industriale e nell’ottimizzazione delle operazioni, interpretati ulteriormente attraverso la loro integrazione nel framework concettuale del settore energetico. La sintesi conclusiva evidenzia come la collocazione lungo la filiera, le funzionalità, la distribuzione dei finanziamenti e l’allineamento con il framework convergano, identificando i cluster in cui si concentrano maggiormente innovazione e risorse finanziarie. Infine, lo studio mette in luce i limiti derivanti dall’affidamento esclusivo a dati pubblicamente disponibili e dall’opacità che circonda i casi di fallimento delle startup. Sottolineando la necessità di un monitoraggio longitudinale e di un coinvolgimento diretto con le startup cessate, vengono proposte direzioni di ricerca future volte a superare il bias di sopravvivenza e a cogliere l’intero spettro delle dinamiche imprenditoriali.
Conceptual analysis of startups theory to better understand their positioning in the energy markets and their business models
Gatti, Elena;SCATTOLIN, TOBIA
2024/2025
Abstract
This thesis investigates Artificial Intelligence (AI) startups, their business models, and strategic dynamics, with a progressive focus on their role in the energy sector. The study is structured around six chapters, beginning with an overview of the transformative power of AI and the emerging role of AI-driven startups. A two-phase literature review follows, identifying eight key dimensions that characterize how AI startups operate and outlining critical research gaps, especially within the energy domain. Building on these insights, a conceptual framework, divided into eight macro blocks, is developed and then adapted specifically to the energy sector, capturing the technological, strategic, and organizational dynamics that shape AI startup activity. An empirical analysis of 91 AI startups active between 2020 and 2025 provides evidence on their positioning within the electricity value chain, functional specialization, funding levels, and geographical trends. The findings reveal patterns of concentration in renewable generation, industrial efficiency, and asset optimization, and are further interpreted through their integration into the conceptual framework of the energy sector. The concluding synthesis highlights how value chain positioning, functionalities, funding distribution, and framework alignment converge, identifying the clusters where innovation and financial resources are most concentrated. Finally, the study underscores the limitations posed by reliance on publicly available data and the opacity surrounding failed ventures. By highlighting the need for longitudinal monitoring and direct engagement with discontinued startups, it points to future research directions aimed at overcoming survivorship bias and capturing the full spectrum of entrepreneurial dynamics.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Gatti_Scattolin_Tesi.pdf
solo utenti autorizzati a partire dal 22/09/2026
Dimensione
3.48 MB
Formato
Adobe PDF
|
3.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243411