Accurately solving Partial Differential Equations (PDEs) is essential in simulating complex physical and chemical phenomena across engineering disciplines. However, certain constitutive relations, such as radiative heat transfer laws or reaction source terms, are difficult to express analytically and often computationally intensive to evaluate numerically. The increasing complexity of engineering problems has driven interest in integrating machine learning (ML) techniques with traditional simulation tools. This thesis explores a hybrid modeling approach that embeds trained machine learning (ML) models into high-fidelity Computational Fluid Dynamics (CFD) simulations using the NNPred framework for OpenFOAM. Initially, the focus is on radiative heat transfer, where the nonlinear emissivity function is approximated using regression-based ML models-Neural Networks (NN), Random Forests (RF), Support Vector Regression (SVR), and Gaussian Process Regression (GPR) trained on synthetic datasets involving temperature and spatial dependencies. Multiple test scenarios, including 1D, 2D, and 3D input configurations, are evaluated in terms of accuracy, generalization, and computational performance. The methodology is then extended to a chemical engineering problem involving Methane (CH4) and Nitrogen Oxides (NOx) conversion. In this case, ML models approximate the reaction source term governed by stiff kinetic expressions, enabling significant computational savings while preserving physical fidelity. Results show that ML-augmented solvers can replicate complex physical behavior and offer a scalable path for incorporating empirical or high-cost relations in numerical solvers. This work underscores the promise of integrating ML with traditional simulation tools to accelerate and enhance PDE-based modeling in engineering.
La risoluzione accurata delle equazioni differenziali alle derivate parziali (PDE) è fondamentale per la simulazione di fenomeni fisici e chimici complessi in numerosi ambiti dell’ingegneria. Tuttavia, alcune relazioni costitutive, come le leggi del trasferimento di calore per irraggiamento o i termini sorgente delle reazioni chimiche, risultano difficili da esprimere analiticamente e spesso sono onerose dal punto di vista computazionale. La crescente complessità dei problemi ingegneristici ha stimolato l’interesse verso l’integrazione di tecniche di apprendimento automatico (Machine Learning, ML) con i tradizionali strumenti di simulazione. Questa tesi esplora un approccio di modellazione ibrida che incorpora modelli ML addestrati all’interno di simulazioni CFD (Computational Fluid Dynamics) ad alta accuratezza, utilizzando il framework NNPred per OpenFOAM. L’analisi inizia con lo studio del trasferimento di calore per irraggiamento, in cui la funzione di emissività, non lineare e dipendente dalla temperatura e dalle coordinate spaziali, viene approssimata tramite modelli di regressione ML: Reti Neurali (NN), Random Forests (RF), Support Vector Regression (SVR) e Gaussian Process Regression (GPR), addestrati su dataset sintetici. Diversi scenari di test, con configurazioni di input 1D, 2D e 3D, sono valutati in termini di accuratezza, capacità di generalizzazione ed efficienza computazionale. La metodologia viene successivamente estesa a un caso applicativo in ingegneria chimica riguardante la conversione del metano (CH4) e degli ossidi di azoto (NOx). In questo contesto, i modelli ML approssimano il termine sorgente della reazione, caratterizzato da cinetiche rigide e non lineari, consentendo una riduzione significativa dei tempi di simulazione senza compromettere la accuratezza fisica. I risultati dimostrano che i solver arricchiti con ML sono in grado di replicare comportamenti fisici complessi e offrono un approccio scalabile per integrare relazioni empiriche o computazionalmente onerose nei modelli numerici. Questo lavoro evidenzia il potenziale dell’integrazione tra tecniche data-driven e strumenti di simulazione tradizionali per migliorare ed accelerare la modellazione ingegneristica basata su PDE.
Hybrid physics-machine learning modeling for heat transfer and chemical reaction CFD simulations
ZHANG, JIAN HAO LOUIS
2024/2025
Abstract
Accurately solving Partial Differential Equations (PDEs) is essential in simulating complex physical and chemical phenomena across engineering disciplines. However, certain constitutive relations, such as radiative heat transfer laws or reaction source terms, are difficult to express analytically and often computationally intensive to evaluate numerically. The increasing complexity of engineering problems has driven interest in integrating machine learning (ML) techniques with traditional simulation tools. This thesis explores a hybrid modeling approach that embeds trained machine learning (ML) models into high-fidelity Computational Fluid Dynamics (CFD) simulations using the NNPred framework for OpenFOAM. Initially, the focus is on radiative heat transfer, where the nonlinear emissivity function is approximated using regression-based ML models-Neural Networks (NN), Random Forests (RF), Support Vector Regression (SVR), and Gaussian Process Regression (GPR) trained on synthetic datasets involving temperature and spatial dependencies. Multiple test scenarios, including 1D, 2D, and 3D input configurations, are evaluated in terms of accuracy, generalization, and computational performance. The methodology is then extended to a chemical engineering problem involving Methane (CH4) and Nitrogen Oxides (NOx) conversion. In this case, ML models approximate the reaction source term governed by stiff kinetic expressions, enabling significant computational savings while preserving physical fidelity. Results show that ML-augmented solvers can replicate complex physical behavior and offer a scalable path for incorporating empirical or high-cost relations in numerical solvers. This work underscores the promise of integrating ML with traditional simulation tools to accelerate and enhance PDE-based modeling in engineering.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Zhang_ExecutiveSummary.pdf
accessibile in internet per tutti
Descrizione: Executive summary
Dimensione
337.46 kB
Formato
Adobe PDF
|
337.46 kB | Adobe PDF | Visualizza/Apri |
|
2025_10_Zhang_Tesi.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
9.55 MB
Formato
Adobe PDF
|
9.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243428